经济文库 - 千万精品文档,你想要的都能搜到,下载即用。

R软件与最优化.pdf

Viewer73 页 1.157 MB 访问 4322.97下载文档
R软件与最优化.pdfR软件与最优化.pdfR软件与最优化.pdfR软件与最优化.pdfR软件与最优化.pdfR软件与最优化.pdf
当前文档共73页 2.97
下载后继续阅读

R软件与最优化.pdf

‚55y†ê5y 8I5y R š‚55y ã†ä©Û ^‡3`z¥A^ Ÿ Email: weitaiyun@google.com ¥HŒÆ êÆ 2008 Ÿ R^‡3`z¥A^ c 12  ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û SNJ‡ 1 ‚55y†ê5y Ÿ R^‡3`z¥A^ ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û SNJ‡ 1 ‚55y†ê5y 2 8I5y Ÿ R^‡3`z¥A^ ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û SNJ‡ 1 ‚55y†ê5y 2 8I5y 3 š‚55y Ÿ R^‡3`z¥A^ ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û SNJ‡ 1 ‚55y†ê5y 2 8I5y 3 š‚55y 4 ã†ä©Û Ÿ R^‡3`z¥A^ ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û ‚55y†ê5y Ÿ ^‡3`z¥A^ R ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û ‚55y†ê5y . minz = Cx Ax 6 b    x>0 s.t. l6X6u    x (1.1) ¥ƒê! 0 - 1 ê½¢ê Ÿ ^‡3`z¥A^ R ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û ‚55y†ê5y . minz = Cx Ax 6 b    x>0 s.t. l6X6u    x (1.1) ¥ƒê! 0 - 1 ê½¢ê .·^uµ Ÿ ^‡3`z¥A^ R ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û ‚55y†ê5y . minz = Cx Ax 6 b    x>0 s.t. l6X6u    x (1.1) ¥ƒê! 0 - 1 ê½¢ê .·^uµ 1 ‚55y¯K Ÿ ^‡3`z¥A^ R ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û ‚55y†ê5y . minz = Cx Ax 6 b    x>0 s.t. l6X6u    x (1.1) ¥ƒê! 0 - 1 ê½¢ê .·^uµ 1 2 ‚55y¯K ê5y¯K Ÿ ^‡3`z¥A^ R ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û ‚55y†ê5y . minz = Cx Ax 6 b    x>0 s.t. l6X6u    x (1.1) ¥ƒê! 0 - 1 ê½¢ê .·^uµ 1 2 3 ‚55y¯K ê5y¯K ·Üê5y¯K Ÿ ^‡3`z¥A^ R ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û ‚55y†ê5y . minz = Cx Ax 6 b    x>0 s.t. l6X6u    x (1.1) ¥ƒê! 0 - 1 ê½¢ê .·^uµ 1 2 3 ‚55y¯K ê5y¯K ·Üê5y¯K ‚55y!ê5yÑ´·Üê5yA~" Ÿ ^‡3`z¥A^ R ¥HŒÆ êÆ ‚55y†ê5y 8I5y Rglpk solve LP(Rglpk) Ÿ ^‡3`z¥A^ R š‚55y ã†ä©Û ¼ê¦)·Üê5y ¥HŒÆ êÆ ‚55y†ê5y 8I5y Rglpk solve LP(Rglpk) š‚55y ã†ä©Û ¼ê¦)·Üê5y ¦e·Üê5y5y¯Kµ Ÿ ^‡3`z¥A^ R ¥HŒÆ êÆ ‚55y†ê5y 8I5y Rglpk solve LP(Rglpk) š‚55y ã†ä©Û ¼ê¦)·Üê5y ¦e·Üê5y5y¯Kµ maxz = 3x1 + x2 + 3x3 −x1 + 2x2 + x3 6 4    4x2 − 3x3 6 2 s.t. x − 3x2 + 2x3 6 3  1   x1 , x3 ê Ÿ ^‡3`z¥A^ R ¥HŒÆ êÆ ‚55y†ê5y 8I5y Rglpk solve LP(Rglpk) š‚55y ã†ä©Û ¼ê¦)·Üê5y ¦e·Üê5y5y¯Kµ “èXeµ Ÿ ^‡3`z¥A^ R maxz = 3x1 + x2 + 3x3 −x1 + 2x2 + x3 6 4    4x2 − 3x3 6 2 s.t. x − 3x2 + 2x3 6 3  1   x1 , x3 ê ¥HŒÆ êÆ ‚55y†ê5y 8I5y Rglpk solve LP(Rglpk) š‚55y ã†ä©Û ¼ê¦)·Üê5y ¦e·Üê5y5y¯Kµ “èXeµ maxz = 3x1 + x2 + 3x3 −x1 + 2x2 + x3 6 4    4x2 − 3x3 6 2 s.t. x − 3x2 + 2x3 6 3  1   x1 , x3 ê >obj<- c(3, 1, 3) >mat<- matrix(c(-1, 0, 1, 2, 4, -3, 1, -3, 2), nrow = 3) >dir<- rep("<=", 3) >rhs<- c(4, 2, 3) >types<- c("I", "C", "I") ## > Rglpk_solve_LP(obj, mat, dir, rhs, types, max = TRUE) Cþa. Ÿ ^‡3`z¥A^ R ¥HŒÆ êÆ ‚55y†ê5y 8I5y Rglpk solve LP(Rglpk) Ÿ R^‡3`z¥A^ š‚55y ã†ä©Û ¼ê¦)·Üê5y ¥HŒÆ êÆ ‚55y†ê5y 8I5y Rglpk solve LP(Rglpk) ÑÑ(Jµ Ÿ R^‡3`z¥A^ š‚55y ã†ä©Û ¼ê¦)·Üê5y ¥HŒÆ êÆ ‚55y†ê5y 8I5y Rglpk solve LP(Rglpk) ÑÑ(Jµ š‚55y ã†ä©Û ¼ê¦)·Üê5y $optimum [1] 26.75 $solution [1] 5.00 2.75 3.00 $status [1] 0 Ÿ R^‡3`z¥A^ ¥HŒÆ êÆ ‚55y†ê5y 8I5y Rglpk solve LP(Rglpk) ÑÑ(Jµ š‚55y ã†ä©Û ¼ê¦)·Üê5y $optimum [1] 26.75 $solution [1] 5.00 2.75 3.00 $status [1] 0 1 $optimum Ÿ R^‡3`z¥A^ 8I¼êŒŠ ¥HŒÆ êÆ ‚55y†ê5y 8I5y Rglpk solve LP(Rglpk) ÑÑ(Jµ š‚55y ã†ä©Û ¼ê¦)·Üê5y $optimum [1] 26.75 $solution [1] 5.00 2.75 3.00 $status [1] 0 1 2 8I¼êŒŠ `) $optimum $solution Ÿ R^‡3`z¥A^ ¥HŒÆ êÆ ‚55y†ê5y 8I5y Rglpk solve LP(Rglpk) ÑÑ(Jµ š‚55y ã†ä©Û ¼ê¦)·Üê5y $optimum [1] 26.75 $solution [1] 5.00 2.75 3.00 $status [1] 0 1 2 3 8I¼êŒŠ `) Ü6Cþ§ 0 žL«¦)¤õ $optimum $solution $status Ÿ R^‡3`z¥A^ ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û $ѯKڍ ¯K Ÿ ^‡3`z¥A^ R ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û $ѯKڍ ¯K $ѯKµAÏ‚55y¯K Ÿ ^‡3`z¥A^ R ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û $ѯKڍ ¯K $ѯKµAÏ‚55y¯K  ¯Kµ 0 - 1 ê5y¯K Ÿ ^‡3`z¥A^ R ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û $ѯKڍ ¯K $ѯKµAÏ‚55y¯K  ¯Kµ 0 - 1 ê5y¯K ^ lpSolve Œ±¦)$ѯKڍ ¯K $ѯKµ¼ê lp.transport() Ÿ ^‡3`z¥A^ R ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û $ѯKڍ ¯K $ѯKµAÏ‚55y¯K  ¯Kµ 0 - 1 ê5y¯K ^ lpSolve Œ±¦)$ѯKڍ ¯K $ѯKµ¼ê lp.transport() lp.transport(cost.mat,direction="min",row.signs,row.rhs,col.signs, col.rhs,presolve=0,compute.sens=0,integers=1:(nc*nr)) ¦) ¯Kµ¼ê lp.assign() Ÿ ^‡3`z¥A^ R ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û $ѯKڍ ¯K $ѯKµAÏ‚55y¯K  ¯Kµ 0 - 1 ê5y¯K ^ lpSolve Œ±¦)$ѯKڍ ¯K $ѯKµ¼ê lp.transport() lp.transport(cost.mat,direction="min",row.signs,row.rhs,col.signs, col.rhs,presolve=0,compute.sens=0,integers=1:(nc*nr)) ¦) ¯Kµ¼ê lp.assign() lp.assign (cost.mat,direction="min",presolve=0,compute.sens=0) Ÿ ^‡3`z¥A^ R ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û 8I5y . K P − − + + min Pl ( (Wlk dk + Wlk dk )) l = 1, 2, . . . , L k=1  P n +   ckj xj + d− k = 1, 2, . . . , K  k − dk = gk   j=1   P n aij xj 6 ( =, >)bi i = 1, 2, . . . , m s.t.  j=1     xj > 0 j = 1, 2, . . . , n   − + d k , dk > 0 k = 1, 2, . . . , K ½ ½ Ÿ ^‡3`z¥A^ R (2.1) ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û 8I5y . K P − − + + min Pl ( (Wlk dk + Wlk dk )) l = 1, 2, . . . , L k=1  P n +   ckj xj + d− k = 1, 2, . . . , K  k − dk = gk   j=1   P n aij xj 6 ( =, >)bi i = 1, 2, . . . , m s.t.  j=1     xj > 0 j = 1, 2, . . . , n   − + d k , dk > 0 k = 1, 2, . . . , K ½ ½ 1 1˜1å8Iå^‡ Ÿ ^‡3`z¥A^ R (2.1) ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û 8I5y . K P − − + + min Pl ( (Wlk dk + Wlk dk )) l = 1, 2, . . . , L k=1  P n +   ckj xj + d− k = 1, 2, . . . , K  k − dk = gk   j=1   P n aij xj 6 ( =, >)bi i = 1, 2, . . . , m s.t.  j=1     xj > 0 j = 1, 2, . . . , n   − + d k , dk > 0 k = 1, 2, . . . , K ½ ½ 1 2 1˜1å8Iå^‡ 11åýéå^‡ Ÿ ^‡3`z¥A^ R (2.1) ¥HŒÆ êÆ ‚55y†ê5y 8I5y llgp(goalprog) ¼ê¦)8I5y š‚55y ã†ä©Û 3. (2.1) k)œ¹e§Œ±òÙzµ . (llgp()¼ê‡¦‚ª) minP(W− d− + W+ d+ )  Ax + d− − d+ = g s.t. d− , d+ > 0  x>0 Ÿ ^‡3`z¥A^ R (2.2) ¥HŒÆ êÆ ‚55y†ê5y 8I5y llgp(goalprog) ¼ê¦)8I5y š‚55y ã†ä©Û 3. (2.1) k)œ¹e§Œ±òÙzµ . (llgp()¼ê‡¦‚ª) minP(W− d− + W+ d+ )  Ax + d− − d+ = g s.t. d− , d+ > 0  x>0 goalprog Ÿ ^‡3`z¥A^ R (2.2) ;€¦)8I5y¯K§Ø%¼êllgp() ¥HŒÆ êÆ ‚55y†ê5y 8I5y llgp(goalprog) ¼ê¦)8I5y š‚55y ã†ä©Û 3. (2.1) k)œ¹e§Œ±òÙzµ . (llgp()¼ê‡¦‚ª) minP(W− d− + W+ d+ )  Ax + d− − d+ = g s.t. d− , d+ > 0  x>0 goalprog (2.2) ;€¦)8I5y¯K§Ø%¼êllgp() llgp(coefficients, targets, achievements,...) Ÿ ^‡3`z¥A^ R ¥HŒÆ êÆ ‚55y†ê5y 8I5y llgp(goalprog) ¼ê¦)8I5y Ÿ ^‡3`z¥A^ R š‚55y ã†ä©Û ¥HŒÆ êÆ ‚55y†ê5y 8I5y llgp(goalprog) ¼ê¦)8I5y š‚55y ã†ä©Û ¦e8I5y¯Kµ + − + min{P1 (2d+ 1 + 3d2 ), P2 d3 , P3 d4 } − x1 + x2 + d1 − d+  1   − +  x + d − d  1 2 2 + 5x1 + 3x2 + d− − d s.t. 3 3  − +  x + x + d − d  1 2 4 4   − + x1 , x2 , d1−4 , d1−4 > 0 Ÿ ^‡3`z¥A^ R = 10 = 4 = 56 = 12 ¥HŒÆ êÆ ‚55y†ê5y 8I5y llgp(goalprog) ¼ê¦)8I5y š‚55y ã†ä©Û ¦e8I5y¯Kµ + − + min{P1 (2d+ 1 + 3d2 ), P2 d3 , P3 d4 } − x1 + x2 + d1 − d+  1   − +  x + d − d  1 2 2 + 5x1 + 3x2 + d− − d s.t. 3 3  − +  x + x + d − d  1 2 4 4   − + x1 , x2 , d1−4 , d1−4 > 0 = 10 = 4 = 56 = 12 “èXeµ > coefficients = matrix(c(1,1,5,1,1,0,3,1), 4) > targets = c(10,4,56,12) > achievements = data.frame(objective=1:4, + priority=c(1,1,2,3), p=c(2,3,0,1), n=c(0,0,1,0)) > soln = llgp(coefficients, targets, achievements) Ÿ ^‡3`z¥A^ R ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û Ü©ëê9(J > achievements # objective priority p n 1 1 1 2 0 2 2 1 3 0 3 3 2 0 1 4 4 3 1 0 > soln$converged # [1] TRUE > soln$out # Decision variables X X1 4.000000e+00 X2 6.000000e+00 Ÿ ^‡3`z¥A^ R ÑÑ Cþƒ'&Eêâµ eTRUE§KL«¦`) ) ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û š‚55y . minz = f (x) x 6 xu  xl 6 b 6 Ax 6 bu s.t.  l cl 6 c(x) 6 cu Ÿ ^‡3`z¥A^ R (3.1) ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û š‚55y . minz = f (x) x 6 xu  xl 6 b 6 Ax 6 bu s.t.  l cl 6 c(x) 6 cu (3.1) n‡å^‡¥µ Ÿ ^‡3`z¥A^ R ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û š‚55y . minz = f (x) x 6 xu  xl 6 b 6 Ax 6 bu s.t.  l cl 6 c(x) 6 cu (3.1) n‡å^‡¥µ 1˜‡½Âå Ÿ ^‡3`z¥A^ R ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û š‚55y . minz = f (x) x 6 xu  xl 6 b 6 Ax 6 bu s.t.  l cl 6 c(x) 6 cu (3.1) n‡å^‡¥µ 1˜‡½Âå 1‡‚5å Ÿ ^‡3`z¥A^ R ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û š‚55y . minz = f (x) x 6 xu  xl 6 b 6 Ax 6 bu s.t.  l cl 6 c(x) 6 cu (3.1) n‡å^‡¥µ 1˜‡½Âå 1‡‚5å 1n‡š‚5å Ÿ ^‡3`z¥A^ R ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û š‚55y . minz = f (x) x 6 xu  xl 6 b 6 Ax 6 bu s.t.  l cl 6 c(x) 6 cu (3.1) n‡å^‡¥µ 1˜‡½Âå 1‡‚5å 1n‡š‚5å å^‡Ú8I¼ê1wž¡ƒ1wš‚55y Ÿ ^‡3`z¥A^ R ¥HŒÆ êÆ ‚55y†ê5y donlp2(Rdonlp2) 8I5y š‚55y ã†ä©Û ¼ê¦)1wš‚55y donlp2(par, fn, par.upper=rep(+Inf, length(par)), par.lower=rep(-Inf, length(par)), A = NULL, lin.upper=rep(+Inf, length(par)), lin.lower=rep(-Inf, length(par)), nlin = list(), nlin.upper=rep(+Inf, length(nlin)), nlin.lower=rep(-Inf, length(nlin)), control=donlp2.control(), control.fun=function(lst)return(TRUE), env=.GlobalEnv, name="Rdonlp2") Ÿ ^‡3`z¥A^ R ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û ¦ekåš‚55y¯K: minz = x2 sin y + y 2 cos x −100 < x < 100     −100 < y < 100    1 6 3x − y 6 3 s.t. x+y >2      sin x cos y 6 0.6   xy = 2 Ÿ R^‡3`z¥A^ ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û “è S“ЩŠ gCþ½Âå p = c(10,10) # par.l= c(-100,-100); par.u = c(100,100) # fn = function(x){ x[1]^2*sin(x[2])+x[2]^2*cos(x[1]) } # A = matrix(c(1,1,3,-1),2,byrow=TRUE) lin.l = c(2,1);lin.u = c(+Inf,3) # nlcon1 = function(x){ x[1]*x[2] } nlcon2 = function(x){ sin(x[1])*cos(x[2]) } nlin.l = c(2,-Inf) nlin.u = c(2,0.6) # ret = donlp2(p, fn, par.u=par.u, par.l=par.l,A,lin.l=lin.l,lin.u=lin.u, nlin=list(nlcon1,nlcon2), nlin.u=nlin.u, nlin.l=nlin.l) 8I¼ê ‚5å š‚5å Ÿ ^‡3`z¥A^ R ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û ^éuªŽ{¦)˜„š‚55y Ÿ R^‡3`z¥A^ ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û ^éuªŽ{¦)˜„š‚55y ¢DŽ{ Ÿ R^‡3`z¥A^ ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û ^éuªŽ{¦)˜„š‚55y ¢DŽ{ [ò»Ž{ Ÿ R^‡3`z¥A^ ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û ^éuªŽ{¦)˜„š‚55y ¢DŽ{ 1 2 µ ¼ê µ ¼ê µ ¼ê gafit gafit() genalg rbga() rgenoud rgenoud() [ò»Ž{ 3 Ÿ R^‡3`z¥A^ ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û ^éuªŽ{¦)˜„š‚55y ¢DŽ{ µ ¼ê µ ¼ê µ ¼ê [ò»Ž{ stats µoptim() ¼ê 1 2 3 gafit gafit() genalg rbga() rgenoud rgenoud() 1 Ÿ R^‡3`z¥A^ ¥HŒÆ êÆ ‚55y†ê5y igraph š‚55y ã†ä©Û 3ã†ä¥A^ Ÿ ^‡3`z¥A^ R 8I5y ¥HŒÆ êÆ ‚55y†ê5y igraph 8I5y š‚55y ã†ä©Û 3ã†ä¥A^ ã†ä¥A‡²;¯K: Ÿ ^‡3`z¥A^ R ¥HŒÆ êÆ ‚55y†ê5y igraph 8I5y š‚55y ã†ä©Û 3ã†ä¥A^ ã†ä¥A‡²;¯K: Œ6¯K )¤ä¯K á´¯K Ÿ ^‡3`z¥A^ R ¥HŒÆ êÆ ‚55y†ê5y igraph 8I5y š‚55y ã†ä©Û 3ã†ä¥A^ ã†ä¥A‡²;¯K: Œ6¯K graph.maxflow(graph, source, target, capacity=NULL) )¤ä¯K minimum.spanning.tree(graph, weights=NULL, algorithm=NULL, ...) á´¯K shortest.paths(graph,v=V(graph),mode=c("all","out","in"),weights) Ÿ ^‡3`z¥A^ R ¥HŒÆ êÆ ‚55y†ê5y igraph 8I5y š‚55y ã†ä©Û 3ã†ä¥A^ ã†ä¥A‡²;¯K: Œ6¯K graph.maxflow(graph, source, target, capacity=NULL) )¤ä¯K minimum.spanning.tree(graph, weights=NULL, algorithm=NULL, ...) á´¯K shortest.paths(graph,v=V(graph),mode=c("all","out","in"),weights) š~rŒ§Œ±¯„B$/Mï!±›Ú©ÛÕã9 k•ã§ãº:Ú>#Nz±þœ igraph Ÿ ^‡3`z¥A^ R ¥HŒÆ êÆ ‚55y†ê5y igraph 8I5y š‚55y ã†ä©Û 3ã†ä¥A^ e㴇k•ã§•X㥆ޤ«§>þêiÙ­: Ÿ R^‡3`z¥A^ ¥HŒÆ êÆ ‚55y†ê5y igraph 8I5y š‚55y ã†ä©Û 3ã†ä¥A^ e㴇k•ã§•X㥆ޤ«§>þêiÙ­: Á¦e¯Kµ Ÿ R^‡3`z¥A^ ¥HŒÆ êÆ ‚55y†ê5y igraph 8I5y š‚55y ã†ä©Û 3ã†ä¥A^ e㴇k•ã§•X㥆ޤ«§>þêiÙ­: Á¦e¯Kµ 1. lº: 0 º: 7 Œ6þ (džã¥ˆ^>þêi“L Nþ›)¶ 2. TëÏã)¤ä¶ 3. Tã¥?¿üº:ƒmá´§ (Е)" Ÿ R^‡3`z¥A^ ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û “è >Ý Eã > e = matrix(nc = 3,byrow = TRUE,c(0,1,5, 0,2,4, 0,3,3, 1,5,3, 1,4,5, + 2,5,3, 2,6,2, 3,6,2, 4,1,5, 4,7,4, 5,7,3, 6,7,5))# > g = add.edges(graph.empty(8),t(e[,1:2]), weight = e[,3]) # > tkplot(g) # > graph.maxflow(g, 0,7, capacity = E(g)$weight) # > mst = minimum.spanning.tree(g) # > tkplot(mst) # > tree_min = sum(E(mst)$weight) # > shortest.paths(g, mode = "out") # ±›ä㠁Œ6 )¤ä ±›)¤ä OŽ¿Ñс)¤ä á´Ý Ÿ ^‡3`z¥A^ R ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û (J Ÿ ^‡3`z¥A^ R ¥HŒÆ êÆ ‚55y†ê5y (J 1 Œ6 8I5y š‚55y ã†ä©Û Œ6 > graph.maxflow(g, 0,7, capacity = E(g)$weight) # [1] 11 Ÿ ^‡3`z¥A^ R ¥HŒÆ êÆ ‚55y†ê5y (J 1 8I5y š‚55y Œ6 ã†ä©Û Œ6 > graph.maxflow(g, 0,7, capacity = E(g)$weight) # [1] 11 2 á´Ý µ [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [1,] 0 5 4 3 10 7 5 10 [2,] Inf 0 Inf Inf 5 3 Inf 6 [3,] Inf Inf 0 Inf Inf 3 2 6 [4,] Inf Inf Inf 0 Inf Inf 2 7 [5,] Inf 5 Inf Inf 0 8 Inf 4 [6,] Inf Inf Inf Inf Inf 0 Inf 3 [7,] Inf Inf Inf Inf Inf Inf 0 5 [8,] Inf Inf Inf Inf Inf Inf Inf 0 Ÿ ^‡3`z¥A^ R ¥HŒÆ êÆ ‚55y†ê5y (J 8I5y )¤äµ > sum(E(mst)$weight) # [1] 20 š‚55y ã†ä©Û OŽ¿Ñс)¤ä 1 0 3 6 2 5 7 Ÿ ^‡3`z¥A^ R 4 ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û À1û¯K À1û¯K´ãØÚ|Ü`z¥²;¯K§áu NP JK"R ¥§TSP ;€¦)À1û¯K§Ø%¼ê solve TSP(): Ÿ R^‡3`z¥A^ ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û À1û¯K À1û¯K´ãØÚ|Ü`z¥²;¯K§áu NP JK"R ¥§TSP ;€¦)À1û¯K§Ø%¼ê solve TSP(): solve_TSP(x, method, control) Ÿ R^‡3`z¥A^ ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û À1û¯K À1û¯K´ãØÚ|Ü`z¥²;¯K§áu NP JK"R ¥§TSP ;€¦)À1û¯K§Ø%¼ê solve TSP(): solve_TSP(x, method, control) rH¥I¯Kµ Ÿ R^‡3`z¥A^ ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û À1û¯K À1û¯K´ãØÚ|Ü`z¥²;¯K§áu NP JK"R ¥§TSP ;€¦)À1û¯K§Ø%¼ê solve TSP(): solve_TSP(x, method, control) rH¥I¯Kµ \·±iI§l®Ñu§‡Hi·I 34 ‡Ž?1¥%§  ‡£®"bˆ¢½ƒm´§Œ±À§‚3/¥¥ ¡þáål§žO˜^´‚¦o1§á" Ÿ R^‡3`z¥A^ ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û rH¥I‚´ Ÿ ^‡3`z¥A^ R ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û 50 rH¥I‚´ 45 ●哈尔滨 长春● ● 乌鲁木齐 40 银川 ● 35 兰州 ● ●石家庄 ● 济南 郑州● ● ● 合肥●南京 ●上海 武汉● ● 杭州 ● ● 南昌 长沙 30 ● 拉萨● 成都 重庆 ● 25 贵阳● 福州● ● 南宁 20 ● 台北 昆明 ●广州 ●● ● 澳门 香港 ● 海口 80 Ÿ ^‡3`z¥A^ ●北京 ●天津 太原 ●西宁 ● 西安 R 沈阳● ● 呼和浩特 90 100 110 120 130 ¥HŒÆ êÆ ‚55y†ê5y 8I5y š‚55y ã†ä©Û (åŠ Thank you! Email: weitaiyun@gmail.com Ÿ R^‡3`z¥A^ ¥HŒÆ êÆ

相关文章