Theory of Topological Spaces, 2nd ed..pdf
2000 , , R. Arens (1919—2000), A. Borel (1923—2003), J. J. Charatonik (1934—2004), B. Fitzpatrick (1931—1999), E. Hewitt (1920—1999), J. Isbell (1931—2005), F. B. Jones (1910—1999), M. Katětov (1918—1995), J. L. Kelley (1917—1999), K. Morita (1915— 1995), J. Nagata (1925—2007), R. H. Sorgenfrey (1915—1996), A. H. Stone (1916— 2000), M. H. Stone (1903—1998), J. W. Tukey (1915—2000), L. Vietoris (1891— 2002), A. Weil (1906—1998) . 20 F. Hausdorff (1868—1942) , , 20 , , C. E. Aull R. Lowen [33, 34, 35] Handbook of the History of General Topology . . , [267, 268] . Encyclopedia of General Topology [180] , Open Problems in Topology [292, 333] , [332] , . 6 . . A. V. Arhangel’skiı̌ [259] : “ , , , .” , Arhangel’skiı̌ “ ” (1910—1988) (1919—2003) 20 70 . . . . . : . : . : . : . (). : ( ). : (). : ( ). : , 1994, 199−205. , 1998, 287−297. , 2000, 560−577. , 2002, 569−582. · iv · 1919 , , 20 , , , 20 70 , P. S. Alexandroff (1896—1982) [5] A. V. Arhangel’skiı̌ [21] “ ” , , 30 . , F. Hausdorff Grundzüge der Mengenlehre[181] , N. Bourbaki Topologie Générale[57] , K. Kuratowski Topologie[239] , J. L. Kelley General Topology[232] , [172] , J. Dugundji Topology[112] , S. Willard General Topology[411] , [233] , J. Nagata Modern General Topology[319] , R. Engelking General Topology [114] , [211] . , , . , 20 60 , , “ [142] . “”“ ” ” [24, 69, 166, 309] , , “Moore ” (R. L. Moore, 1882—1974) , , , “” , , . , . , . , , , . , , . , , . 90 , : , “” “” , “”, “” . . , , . “ ·v· ” ( 10571151) , . , . 2008 1 : 352100 E-mail: linshou@public.ndptt.fj.cn . 1979 , . , . . “” “ ” , . 60 80 , “” “ ” , , ! , 70 , , , . . ", , . “” . Arhangel’skiı̌ “” . , # . Σ , # . . , "!. " , $. . , , , ( #), , & , . %. ( ). , . . , , . ' , , . · viii · . , . 1999 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 0.......................................................................6 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2 . . . . . . . . . . . . . . . . . . . . 27 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.2 Tychonoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4 $# k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.5 # 3.6 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 ·x· 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.1 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.3 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 5.1 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 5.2 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.3 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.4 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 5.5 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.6 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 6.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 6.6 Iso # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 7 () . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 7.1 Moore , Gδ % . . . . . . . . . . . . . . . . . . . . . . . . 199 7.2 w∆ M p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 7.3 σ Σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 7.4 Mi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 . . . . . . . . . . . . . . . . 248 7.5 k , , 7.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 8 () . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 8.1 ℵ0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 8.2 ℵ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 8.3 cs cs-σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 8.4 σ · xi · k Lašnev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 8.5 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 0.1 (set) A, B (union) (intersection) (difference) A ∪ B = {x : x ∈ A x ∈ B}, A ∩ B = {x : x ∈ A x ∈ B}, / B}. A − B = {x : x ∈ A x ∈ “∈”“∈” / “”“”. (empty set) ∅ , A∩B = ∅ A B ; A − B = ∅ A ⊂ B, x ∈ A ⇒ x ∈ B. “⇒” “”. “⇔” “”. A ⊂ B A B (subset). A ⊂ B A = B A B (proper subset), A B. . , (family collection), , A , B . (index set), {Aγ }γ∈Γ , {Aγ : γ ∈ Γ }, Γ . {A1 , A2 , · · · , An , · · ·} , {An }n∈N , {An : n ∈ N}, N, {An } {An }∞ n=1 . γ∈Γ Aγ γ∈Γ Aγ ; ∞ n∈N An ( ∞ n=1 An ) n∈N An ( n=1 An ). , 0 . {Aγ }γ∈Γ X , B X , (i) B ∪ ( γ∈Γ Aγ ) = γ∈Γ (B ∪ Aγ ), B ∩ ( γ∈Γ Aγ ) = γ∈Γ (B ∩ Aγ ); (ii) X − ( γ∈Γ Aγ ) = γ∈Γ (X − Aγ ), X − ( γ∈Γ Aγ ) = γ∈Γ (X − Aγ ). (i) (distributive law), (ii) de Morgan (de Morgan formula). , X , B ⊂ X, X − B B X (complement). de Morgan = , = . X Y , X a Y b (ordinal pair) (a, b) X Y (product), ·2· X × Y = {(a, b) : a ∈ X, b ∈ Y }. X × Y R (relation), (a, b) ∈ R, aRb. f ⊂ X × Y X Y (mapping), x ∈ X, y ∈ Y , (x, y) ∈ f , y x , (x, y) ∈ f (x, y ) ∈ f ⇒ y = y . f : X → Y , x y f (x). f : x → f (x), x ∈ X, f (x) ∈ Y . A ⊂ X f (image) f (A) = {y : y = f (x), x ∈ A}. B ⊂ Y f (inverse image) (preimage) f −1 (B) = {x : f (x) ∈ B}. X, f (X) f . f : X → Y (injective mapping), f (x) = f (x ) ⇒ x = x ; (surjective mapping), f (X) = Y , f X Y (onto) . , (bijective mapping), (inverse mapping) f −1 : Y → X f −1 (y) = x ⇔ f (x) = y. f f (f −1 (B)) = B ∩ f (X) ⊂ B, f −1 (f (A)) ⊃ A. f , f (f −1 (B)) = B; f , f −1 (f (A)) = A. {Aγ }γ∈Γ , Γ γ∈Γ Aγ f (γ) ∈ Aγ (γ ∈ Γ ) f γ∈Γ Aγ , {Aγ }γ∈Γ (product of families). f ∈ γ∈Γ Aγ , f (γ) ∈ Aγ f γ (coordinate), f (γ) = xγ , γ∈Γ Aγ f xγ (γ ∈ Γ ) , {xγ }, {xγ }γ∈Γ ( ). γ∈Γ Aγ Aγ pγ {xγ } ∈ γ∈Γ Aγ , pγ ({xγ }) = xγ , γ∈Γ Aγ Aγ (projection). R ⊂ X × X X . X (equivalence relation), (i) x ∈ X, xRx (); (ii) xRy, yRx (); (iii) xRy yRz, xRz ( ). X = γ∈Γ Aγ , γ = γ ⇒ Aγ ∩ Aγ = ∅, {Aγ }γ∈Γ X (decomposition). X R X x, y Aγ , xRy; , X X RxRy γ ∈ Γ , x, y ∈ Aγ . 0.1 ·3· X < X (linear order) (total order), (i) x = y, x < y y < x ; (ii) x < y, y < x (); (iii) x < y, y < z, x < z. () < X (linearly ordered set) (totally ordered set) (chain), (X, <). x0 ∈ X X (minimum element)( (maximum element)), x ∈ X − {x0 }, x0 < x (x0 > x). X (well-ordered set), X . (X, <) (Y, < ) (order preserving), x, x ∈ X, x < x ⇒ f (x) < f (x ). X X (order) (partial order), (i) x ∈ X, x x; (ii) x y y x, x = y; (iii) x y y z, x z. (order set) (partially ordered set), (X, ). X <, x, y ∈ X xy⇔x α. < . ∅ 0, . , (finite ordinal number); (infinite ordinal number). N , o(N) = ω, (minimal infinite ordinal number). α, α + 1 α (successor), α α + 1 (predecessor). 0 (isolated ordinal), (limit ordinal). , X, Y X, Y , o(X) = o(Y ) ⇒ |X| = |Y |. α α , |α|. |α| ℵ0 , α (countable ordinal number); (uncountable ordinal number). ω () , |ω| = ℵ0 ; (minimal uncountable ordinal number) ω1 , |ω1 | = ℵ1 . αi < ω1 (i = 1, 2, · · ·), sup {αi : i = 1, 2, · · ·} < ω1 , αi < α i = 1, 2, · · · . α < ω1 , α, β , X, Y , o(X) = α, o(Y ) = β X ∩ Y = ∅. X ∪ Y x, y ∈ X ∪ Y , x, y ∈ X x, y ∈ Y , x, y ; x ∈ X, y ∈ Y , x < y. α + β = o(X ∪ Y ). α > 0, [0, α) α ( 0.7). α [0, α) , α, β > 0, α × β [0, α) [0, β) , α × β = {(x, y) : x ∈ [0, α), y ∈ [0, β)}. ·6· 0.3 (transfinite induction). α, P (α). , P (α) α (1) α = 0, P (0) ; (2) α < α0 α, P (α) , P (α0 ) . . (axiom of [114]. choice), (i) Zermelo . {Xγ }γ∈Γ , Γ γ∈Γ Xγ f γ ∈ Γ , f (γ) ∈ Xγ . (ii) Zermelo (). . (iii) Zorn . () X , X . A (finite character) , A A A A . (iv) Tukey . ( ⊂ ), A0 ∈ A , A ∈ A , A0 ⊂ A ⇒ A0 = A. 0.1 0 f : X → Y , A, B ⊂ X, C, D ⊂ Y . , “=” “⊂” ? ? “=” ? (i) f (A ∪ B) = f (A) ∪ f (B); (ii) f (A ∩ B) = f (A) ∩ f (B); (iii) f (A − B) = f (A) − f (B); (iv) f −1 (C ∪ D) = f −1 (C) ∪ f −1 (D); (v) f −1 (C ∩ D) = f −1 (C) ∩ f −1 (D); (vi) f −1 (C − D) = f −1 (C) − f −1 (D). 0.2 f : X → Y . A ⊂ X, C ⊂ Y , (i) f (A ∩ f −1 (B)) = f (A) ∩ B; (ii) f (A − f −1 (B)) = f (A) − B. 0.3 f : X → Y , A, C X, Y , f −1 (C) ⊂ A ⇔ C ⊂ Y − f (X − A). 0.4 A A α + n , α , , n 0 . 0.5 ω + 1 > ω, 1 + ω = ω, 0.6 0.7 0.8 {Xγ}γ∈Γ , Γ = ∅, . ω1 . α, [0, α) α. γ∈Γ Xγ =∅. 1 , (General Topology). . G. Cantor 1895 1897 , 20 F. Hausdorff, M. Fréchet, C. Kuratowski , P. Urysohn, P. Alexandroff A. [4] Tychonoff . 1960 , P. Alexandroff . C. E. Aull R. Lowen Handbook of the History of General Topology [33, 34, 35] . , . 1.1 1.1.1 , X, T X (O1) ∅ ∈ T , X ∈ T ; (O2) Ui ∈ T (i = 1, 2, · · · , n), n i=1 Ui ∈ T ; (O3) Uγ ∈ T (γ ∈ Γ ), ∪{Uγ : γ ∈ Γ } ∈ T , Γ , (X, T ) (topological space). T (topology), T (open set). X T , X . 1.1.2 T , T X , T ⊂ T , T T (coarse) T T (fine). R ( ) R (usual topology). n (Euclidean space) Rn (y1 , y2 , · · · , yn ) n ρ(x, y) = (xi − yi )2 , i=1 , x = (x1 , x2 , · · · , xn ), y = ·8· 1 Sε (x) = {y : y ∈ Rn , ρ(x, y) < ε} ( x ε ), T = {U : U ⊂ Rn , x ∈ U ε > 0 Sε (x) ⊂ U } Rn , Rn (usual topology) (Euclidean topology). R Rn . X T1 ∅ X , T1 (indiscrete trivial topology), . T2 X , T2 (discrete topology), . (discrete space). 1.1.3 X , x ∈ X. X U , x, U x (neighborhood); U x ∈ U , U x (open neighborhood). R , . n Rn Sε (x) x (ε) , Sε (x) . Sε (x) Sε (x) . 1.1.1 U (x) x ∈ X , (N1) X ∈ U (x); (N2) U ∈ U (x), x ∈ U ; (N3) U ∈ U (x), V ⊃ U , V ∈ U (x); (N4) U, V ∈ U (x), U ∩ V ∈ U (x); x ∈ V ⊂ U x ∈ V, V ∈ U (x ). (N5) U ∈ U (x), V (N1)∼(N3) 1.1.3 , (N4) 1.1.3 (O2) . (N5). U ∈ U (x), ( 1.1.3), V x ∈ V ⊂ U , V x , V ∈ U (x ) (x ∈ V ). . 1.1.2 X U U . . , x ∈ U , 1.1.3, V (x), x ∈ V (x) ⊂ U , U = ∪{V (x) : x ∈ U }, U , 1.1.1 (O3) U . . 1.1.1 , . X x U (x) (N1)∼(N5), U (x) x , 1.1.2 , (N1), (N4) (N3) 1.2 ·9· 1.1.1 (O1), (O2) (O3), X . , . . 1.1.4 X F (closed set), X − F . 1.1.3 X F F (F1) ∅ ∈ F , X ∈ F ; (F2) Fi ∈ F (i = 1, 2, · · · , n), ni=1 Fi ∈ F ; (F3) Fγ ∈ F (γ ∈ Γ ), ∩{Fγ : γ ∈ Γ } ∈ F , Γ . (F3), . de Morgan X − ∩{Fγ : γ ∈ Γ } = ∪{X − Fγ : γ ∈ Γ }. Fγ , X − Fγ , 1.1.1, , . 1.1.4, ∩{Fγ : γ ∈ Γ } . . , (F1)∼(F3) X . . 1.1.4 F X (F1)∼(F3), F (X, T ) , T = {X − F : F ∈ F }. X A Gδ (Fσ ), A () () . 1.2 1.2.1 X U (, base), U ; V (, subbase), V . 1.2.1 U V x ∈ V , U ∈U, x∈U ⊂V. . R, (a, b) , a, b (a < b), a, b ; (a, +∞), (−∞, b) , a, b , . 1.2.2 U X , U (B1) U1 , U2 ∈ U x ∈ U1 ∩ U2 , U3 ∈ U , x ∈ U3 ⊂ U1 ∩ U2 ; · 10 · 1 (B2) ∪{U : U ∈ U } = X. , X , U X (B1) (B2), T = {∪V : V ⊂ U }, T (O1)∼(O3), X U . 1.2.1, , . ∅, (B2) (O1). T , (O3). T (O2), (B1) ( n − 1 ), . U1 , U2 , · · · , Un ∈ U x ∈ ni=1 Ui , U ∈ U , n x∈U ⊂ n Ui . (1.2.1) i=1 V1 , V2 , · · · , Vn ∈ T x ∈ i=1 Vi , x ∈ Vi (i = 1, 2, · · · , n). Vi U , Ui ∈ U x ∈ Ui ⊂ Vi . (1.2.1) , n n x ∈ U ⊂ i=1 Vi . i=1 Vi U , U ∈U, n (X, T ) . i=1 Vi ∈ T . T (O2). , U . V X , V (B2); , X , V X (B2), U V T , U (B1) (B2), V X , U , X V . 1.2.2 x X , x B(x) x (neighborhood base), x U , V ∈ B(x), x ∈ V ⊂ U. 1.2.3 B(x) X x , (NB1) B(x) = ∅; (NB2) U ∈ B(x), x ∈ U ; (NB3) U ∈ B(x) V ∈ B(x), W ∈ B(x), W ⊂U ∩V; (NB4) U ∈ B(x), V x ∈ V ⊂ U , x ∈ V , W ∈ B(x ) W ⊂ V . . , . 1.2.4 X , x ∈ X X B(x) (NB1)∼(NB4), U (x) = {U : U ⊃ V, V ∈ B(x)}, 1.2 · 11 · U (x) (N1)∼(N5). X U (x) , B(x) x . x . n Rn , x ε Sε (x) (ε > 0) x B(x), B(x) B (x) = {S1/n (x) : n = 1, 2, · · ·} x . ∪{B(x) : x ∈ Rn } ∪{B (x) : x ∈ Rn } Rn . , () (equivalent neighborhood base). 1.2.1 (Smirnov , B(x) = [372] ) R+ = [0, ∞) = {x : 0 x < +∞} {(x − ε, x + ε) ∩ R+ : ε > 0}, x = 0, {[0, ε) − {1, 1/2, 1/3, · · ·} : ε > 0}, x = 0, B(x) 1.2.3 (NB1)∼(NB4), R+ . R , Smirnov (Smirnov’s deleted sequence topology). 1.2.2 (Niemytzki [372] ) R R2 x , R = {(x, y) : y 0, −∞ < x < +∞}, B(x, y) = {Sε ((x, y)) ∩ R : ε > 0}, y = 0, {Sε ((x, ε)) ∪ {(x, 0)} : ε > 0}, y = 0, x . B((x, y)) (NB1)∼ (NB4), R . R2 , Niemytzki (Niemytzki’s half-plane topology) Niemytzki (Niemytzki’s tangent disc topology). . 1.2.3 ( [372] ) X , V = {(a, +∞) : a ∈ X} ∪ {(−∞, b) : b ∈ X} X ( 1.2.2 ), V X (linearly ordered topology), X (linearly ordered space). (a, b) = (a, +∞) ∩ (−∞, b) (a, b ∈ X) . X (i) X (ii) X (a, b), a, b ∈ X; a0 , [a0 , b), b ∈ X; · 12 · 1 (iii) X b0 , (a, b0 ], a ∈ X. R . (ordered topology), (ordered space). [0, ω1 ), α, β < ω1 , , (β, α] = (β, +∞) ∩ (−∞, α + 1). [0, ω1 ) , {{0}} ∪ {(β, α] : 0 β < α < ω1 } , B(α) = α ∈ [0, ω1 ) {{0}}, α = 0, {(β, α] : β < α}, α = 0 . T = {U ⊂ [0, ω1 ) : α ∈ U, α > 0 β < α, T [0, ω1 ) . (β, α] ⊂ U }, [0, ω1 ) . 1.3 1.3.1 A X , A A (closure), A , A, A− ClA. A A (contact point). 1.3.1 , X A , A = A; U , X − U = X − U . 1.3.1 (C1) ∅ = ∅; (C2) A ⊃ A; (C3) A ∪ B = A ∪ B; (C4) A = A. (C1)∼(C4) Kuratowski (Kuratowski’s closure axioms). (C1), (C2) 1.3.1 . (C3), 1.3.1, A ∪ B ⊃ A ⇒ A ∪ B ⊃ A. , A ∪ B ⊃ B, A ∪ B ⊃ A∪B. , A∪B A∪B , 1.3.1, A ∪ B A ∪ B , A ∪ B ⊂ A ∪ B. (C4), A A , A , . . 1.3.2 x ∈ A x A . x U A , U , X − U A , X − U ⊃ A, x ∈ / A. , x ∈ / A, X − A x A . . 1.3 · 13 · 1.3.3 U x x ∈ / X − U. U x , U ∩ (X − U ) = ∅, 1.3.2 x ∈ / X − U. , x ∈ / X − U, 1.3.2, x V V ∩ (X − U ) = ∅, V ⊂ U , U x . . X, X A A, A = A, , . X, A X, A = X (A = ∅), A = ∅ (A = ∅). 1.3.4 X , X A, A (C1)∼(C4), X U X − U = X − U, (1.3.1) (O1)∼(O3), X . (C2), X − ∅ = X = X = X − ∅, (1.3.1) , ∅ . (C1), X − X = ∅ = ∅ = X − X, (1.3.1) , X . Ui (i = 1, 2, · · · , n) , (1.3.1) , X − Ui = X − Ui (i = 1, 2, · · · , n), (C3), n n X− Ui = i=1 n (X − Ui ) = i=1 n n (X − Ui ) = X − = (1.3.1) , ni=1 Ui . Uγ (γ ∈ Γ ) , (1.3.1) , X − Ui i=1 i=1 Ui . i=1 X − Uγ = X − Uγ , γ ∈ Γ. , (C3) C ⊂ D ⇒ C ⊂ D. γ∈Γ (X − Uγ ) ⊂ X − Uγ (γ ∈ Γ ) (X − Uγ ) ⊂ γ∈Γ X − Uγ . γ∈Γ X− Uγ = γ∈Γ (X − Uγ ) ⊂ γ∈Γ X − Uγ γ∈Γ (X − Uγ ) = X − = γ∈Γ Uγ . γ∈Γ (O3). · 14 · 1 (C2) , X− Uγ = X − γ∈Γ (1.3.1) , γ∈Γ Uγ . . . 1.3.1 R R R∗ A, A A= Uγ . γ∈Γ x∗ R∗ , R∗ = R ∪ {x∗ }. (A − {x∗ } R ) ∪ {x∗ }, A , A, A . , A , 1.3.4, R∗ . , . 1.3.2 A X , A A (interior), A , A◦ IntA. 1.3.2 , X A , A◦ = A. A X , x A (inner point), A x , x U (x) ⊂ A; A (), A . . 1.3.5 A X , A◦ = X − X − A. X − A X − A , X − X − A X − (X − A) = A , A◦ , A◦ = X − X − A. . 1.3.1 1.3.5 de Morgan . . 1.3.6 (I1) X ◦ = X; (I2) A◦ ⊂ A; (I3) (A ∩ B)◦ = A◦ ∩ B ◦ ; (I4) (A◦ )◦ = A◦ . 1.3.5, , . 1.3.7 A X , A = X − (X − A)◦ . “ ” , 1.3.5 1.3.7 A◦ = A− A− = A◦ . 1.3.3 x A (accumulation point) (limit point), x ∈ A − {x}; A A (derived set), Ad ; A − Ad A (isolated point). 1.3 · 15 · , x X {x} . , X x ∈ X . [0, ω1 ) ( 1.2.3), α = β + 1, (β, α] = {α}, [0, ω1 ) , . x Ad 1.3.8 . x A x 1.3.3, x ∈ A − {x}. 1.3.2, x ∈ A − {x} x A − {x} , x A x . . 1.3.9 (D1) A = A ∪ Ad ; (D2) A ⊂ B, Ad ⊂ B d ; (D3) (A ∪ B)d = Ad ∪ B d ; (D4) γ∈Γ Adγ ⊂ ( γ∈Γ Aγ )d . . 1.3.4 A (dense) X, A = X; (, nowhere dense) X, (A)◦ = ∅; (, first category), A ; (, second category), A . A V V ∩ A = ∅ ( 1.15). X U 1.3.2 R R, R. Q , , R ; I . . I , R = Q ∪ I . ∞ R= Ai , (1.3.2) i=1 Ai (i = 1, 2, · · ·) R. I1 = (0, 1), A1 , V1 ∩ A1 = ∅. R () V1 ⊂ I1 , , V1 , V1 ⊂ I1 , V1 , V2 , · · ·, V 1 ∩ A1 = ∅. · 16 · 1 V1 ⊃ V2 ⊃ · · · ; V i ∩ Ai = ∅ Vi (1.3.3) (i = 1, 2, · · ·); (1.3.4) 1/i. (1.3.5) ∞ (1.3.3) (1.3.5), {V i } , x ∈ i=1 V i , x ∈ R, (1.3.4), x ∈ / Ai (i = 1, 2, · · ·), (1.3.2) . . I 1.3.5 A X , A ∩ X − A A (boundary frontier), FrA ∂A; x ∈ A ∩ X − A A (boundary point frontier point). 1.3.5, FrA = A ∩ (X − A◦ ) = A − A◦ , x A x A , X − A . 1.3.10 A , (i) A◦ = A − FrA; (ii) A = A ∪ FrA; (iii) Fr(A ∪ B) ⊂ FrA ∪ FrB; (iv) Fr(A ∩ B) ⊂ FrA ∪ FrB; (v) A , FrA = A − A, A ∩ FrA = ∅; (vi) A , FrA = A − A◦ , FrA ⊂ A; (vii) A FrA = ∅. (i) (iii), . A − FrA = A − (A ∩ X − A) = (A − A) ∪ (A − X − A) = A − X − A = A ∩ A◦ = A◦ . Fr(A ∪ B) = A ∪ B ∩ X − (A ∪ B) = (A ∪ B) ∩ (X − A) ∩ (X − B) ⊂ (A ∪ B) ∩ (X − A ∩ X − B) ⊂ (A ∩ X − A) ∪ (B ∩ X − B) = FrA ∪ FrB. (i), (iii) . . 1.4 . 1.4 · 17 · , . ε- δ , f (x) x0 y0 = f (x0 ) f (Sδ (x0 )) ⊂ Sε (y0 ). ε Sε (y0 ), x0 δ Sδ (x0 ), , . ; . , . 1.4.1 F X , (Fl1) ∅ ∈ / F; (Fl2) A ∈ F B ⊃ A, B ∈ F ; (Fl3) A ∈ F B ∈ F , A ∩ B ∈ F , F (filter). F F , F (maximal filter) (ultrafilter). U (finite intersection property), U . 1.4.1 F , F F . Φ = {F : F F }, F1 ⊂ F2 Φ F1 , F2 , Φ . , Φ () . Zorn , Φ F , F F , A ∩ B = ∅, . F (Fl1). A, B ∈ F , F = {A ∩ B} ∪ F , F ∈ Φ; F Φ , A ∩ B ∈ F , (Fl3). (Fl2), B ⊃ A, A ∈ F , {B} ∪ F ∈ Φ, , B ∈ F . . 1.4.2 F F F . F , A F , F = {C : C ⊃ A ∩ B, B ∈ F }, F F , A . F , F = F , A ∈ F . , F 1.4.2 , F F , F ⊃ F . , . A ∈ F , (Fl3) (Fl1), A F , F , , A ∈ F , F ⊂ F. . 1.4.2 F X , x ∈ X. x F , F (converge to) x, F → x. · 18 · 1 1.4.1 (Fl2) F → x x U , A∈F A ⊂ U. 1.4.3 A ∈ F , x ∈ A, x F (cluster point of filter). 1.4.3 F x, x F ; , F , x F , F x. F → x A ∈ F , 1.4.2, x U ∈ F , (Fl3) (Fl1), A ∩ U = ∅, 1.3.2, x ∈ A, 1.4.3, x F . , x F , 1.4.3, x U F , 1.4.2, U ∈ F , 1.4.2, F → x. . 1.4.1 , F F F ∈ F , F ∈ F F ⊂ F , F F (filter base), F (FB1) ∅ ∈ / F ; (FB2) F1 , F2 ∈ F , F3 ∈ F , F3 ⊂ F1 ∩ F2 . , F (FB1) (FB2). F = {F : F ⊃ F , F ∈ F }, F F . F (generate) F . F x, x U , F ∈ F , F ⊂ U , F x, F → x. F F , F → x F → x. x U (x) (Fl1)∼(Fl3), , 1.4.2, U (x) x, . x F (x) 1.4.1, , , . F F (x) , F B x ∈ B, B {x} F , . B ∈ F (x), F = F (x), F (x) . (principle ultrafilter). , F , ∩F = ∅, (free ultrafilter). . Hi = (i, +∞) (i = 1, 2, · · ·). F = {Hi : i = 1, 2, · · ·}, F (Fl1) (Fl3), (Fl2). F = {A : A ⊃ Hi , i = 1, 2, · · ·}, F , F F , , F , F . x, y , F , x, y F , F . , 1.4 · 19 · 1.4.4 D , D > (i) a > b, b > c, a > c ; (ii) D a, b ∈ D, c ∈ D, c > a c > b, D (direct set). 1.4.5 ∆ , X , ∆ X ϕ(δ) (δ ∈ ∆), ∆ (net), , ϕ(∆; >), > ∆ . X {ϕ(δ) : δ ∈ ∆} ∆ . ϕ(δ) ϕ(∆; >) . 1.4.6 ϕ(∆; >) X , A ⊂ X, δ0 ∈ ∆ δ > δ0 ⇒ ϕ(δ) ∈ A, ϕ(∆; >) (eventually in) A; A ⊂ X, ϕ(∆; >) A X − A, ϕ(∆; >) (maximal net) (ultra net); δ0 ∈ ∆, δ ∈ ∆, δ > δ0 , ϕ(δ) ∈ A, ϕ(∆; >) (cofinal in) A. 1.4.7 ϕ(∆; >) x , x, ϕ(∆; >) → x; ϕ(∆; >) x , x (cluster point of net). F = {Aδ : δ ∈ ∆} , ∆ δ > δ Aδ ⊂ Aδ ( δ = δ ⇒ Aδ = Aδ ); ∆ ϕ(∆; >) δ ∈ ∆, ϕ(δ) ∈ Aδ , F (derived net). , ϕ(∆; >), F = {A : ϕ(∆; >) A}. F , F ϕ(∆; >) (derived filter). 1.4.4 F x F x. F → x, F = {Aδ : δ ∈ ∆}, ϕ(∆; >) F , ϕ(δ) ∈ Aδ , δ ∈ ∆. U x , 1.4.2, U ∈ F , U = Aδ0 (δ0 ∈ ∆), δ > δ0 , Aδ ⊂ Aδ0 = U , ϕ(δ) ∈ U , 1.4.7, ϕ(∆; >) → x. , F x, 1.4.2, x U ∈ / F , δ ∈ ∆, Aδ ⊂ U (, 1.4.1 (Fl2), U ∈ F ). ϕ(δ) ∈ Aδ −U, δ ∈ ∆, F ϕ(∆; >), x. . 1.4.5 ϕ(∆; >) x x. F ϕ(∆; >) , F = {A : ϕ(δ; >) A}. · 20 · 1 ϕ(∆; >) → x, x U, ϕ(∆; >) U , U ∈ F , F → x. , F → x, x U , U ∈ F , F , ϕ(∆; >) U , ϕ(∆; >) → x. . 1.4.1 ϕ(∆; >) . lim xn = a , ∆ N, > n→∞ . , ϕ(n) = xn (n ∈ N), lim ϕ(x) = b , ∆ = U (x0 ) − {x0 }, U (x0 ) x→x0 > x > x, ρ(x , x0 ) < ρ(x, x0 ) ( ρ(x, y) x, y ). (Riemann) , b . . . a f (x)dx , [a, b] T x0 , a = x0 < x1 < x2 < · · · < xn−1 < xn = b, T = (x0 , x1 , x2 , · · · , xn−1 , xn ). ξi ∈ [xi , xi+1 ] (i = 0, 1, 2, · · · , n − 1) Tξ = (x0 , ξ0 , x1 , ξ1 , x2 , · · · , xn−1 , ξn−1 , xn ). ∆ Tξ , λ(T ) = max{xi+1 − xi }. > Tξ > Tξ , λ(T ) < λ(T ), i ϕ(Tξ ) = n−1 f (ξi )∆xi , Tξ ∈ ∆. i=0 1.4.2 , . ∆ = {(n, m) : n, m = 1, 2, · · ·}, (n, m) > (n , m ), n > n , m m , ∆ . ∆ R2 ϕ(∆; >) ϕ((n, m)) = (1/n, 1/m). , ϕ(∆; >) → (0, 0). ∆ = {(n, 1) : n = 1, 2, · · ·}, ∆ ∆ , “ ” ϕ (∆ ; >) (0, 0), (0, 0) , . , “ ” . ∆ ∆ ∆, δ ∈ ∆, δ ∈ ∆ δ > δ. ∆ ∆ , 1.5 · 21 · ϕ(∆; >) → x ⇒ ϕ(∆ ; >) → x, , , . ∆ . δ ∈ ∆ δ1 < δ2 < · · · < δn = δ, δ1 , δi+1 δi . , δ = ω, 2ω, ω 2 , δ1 ω, 2ω, ω 2 ; δ = ω + 3 , δ1 = ω, δ2 = ω + 1, · · · , δ4 = ω + 3. δ ∈ ∆ n (ω, 2ω, ω 2 1, ω + 3 4), ∆ R ϕ(∆; >) ϕ(δ) = 1/n, n δ . ∆ ∆ ϕ(∆ ; >) → 0. δ ∈ ∆, 0 1.5 ϕ(∆; >) , 1.5.1 X Y f (continuous), Y V f −1 (V ) X . , f : X → Y f −1 (f (A)) ⊃ A, f (f −1 (B)) ⊂ B. f , , f (f −1 (B)) = B. , f −1 (B) ⊂ A B ⊂ Y − f (X − A). ( 0.3), (1.5.1) 1.5.1 (i) X Y f ; −1 (ii) Y F f (F ) ; (iii) B ⊂ Y , f −1 (B) ⊃ f −1 (B); (iv) A ⊂ X, f (A) ⊂ f (A); (v) x ∈ X f (x) V , x U , f (U ) ⊂ V . −1 (i) ⇒ (ii). F Y , (i), f (Y − F ) X , f −1 (F ) = X − f −1 (Y − F ) X . (ii) ⇒ (i). . (ii) ⇒ (iii). f −1 (B) f −1 (B) f −1 (B) f −1 (B) . · 22 · 1 (iii) ⇒ (iv). (iii), f −1 (f (A)) ⊃ f −1 (f (A)) ⊃ A, f (A) ⊃ f (f −1 (f (A))) ⊃ f (A). (iv) ⇒ (ii). F Y , (iv), f (f −1 (F )) ⊂ f (f −1 (F )) ⊂ F = F , f −1 (F ) ⊂ f −1 (F ), f −1 (F ) ( 1.3.1). (i) ⇒ (v). x ∈ X, V f (x) , G, (i), f −1 (G) . U = f −1 (G), U x (v) ⇒ (i). G Y , x ∈ f (v), x U −1 , f (U ) ⊂ G ⊂ V . (G) ⇒ f (x) ∈ G. G f (x) f (U ) ⊂ G, U ⊂ f x ∈ f −1 (G) , f −1 (G) ( f (x) ∈ G ⊂ V , −1 (f (U )) ⊂ f −1 (G), . 1.1.2). 1.5.2 X Y f , Y X , f (homeomorphism) (topological mapping). , X Y (homeomorphic). (topological property) (topological invariant). . R . , (0, 1) R f x → (2x − 1)/x(1 − x); , . , , . 1.5.3 X Y f (closed mapping), X F f (F ) Y ; (open mapping), X U f (U ) Y . 1.5.1 R2 R ( ) f : (x, y) → x , , F = {(x, y) : y = 1/x, x ∈ R − {0}} R2 ( ), f (F ) = R − {0} ( x ) R . , f ( 2.1.3). X [0, 2], Y [0, 1], X, Y . f (x) = 0, x ∈ [0, 1], x − 1, x ∈ (1, 2]. , f . F X = [0, 2] , F1 = F ∩ [0, 1], F2 = F ∩[1, 2], F1 , F2 X , F = F1 ∪F2 , f (F1 ) = {0} Y = [0, 1] 1.5 · 23 · , f (F2 ) = {x − 1 : x ∈ F2 } Y , f (F ) = f (F1 ) ∪ f (F2 ) Y , f . f , X (0, 1) f ((0, 1)) = {0}, Y . X R ( ), Y R , Y R , . f X Y (x → x, x ∈ R). , f , , . , f f () . 1.5.2 (i) X Y f ; (ii) X A, f (A◦ ) ⊂ (f (A))◦ ; (iii) Y B, f −1 (B) ⊂ f −1 (B); (iv) x ∈ X U f (U ) f (x) . (i) ⇒ (ii). f (A◦ ) ⊂ f (A), (i), f (A◦ ) , f (A◦ ) ⊂ (f (A))◦ ( 1.3.2). (ii) ⇒ (iv). U x ∈ X , x ∈ U ◦ , (ii), f (x) ∈ (f (U ))◦ , f (U ) x . (iv) ⇒ (iii). x ∈ f −1 (B), f (x) ∈ B, U x , (iv), f (U ) f (x) , f (U ) ∩ B = ∅, x ∈ U , f (x ) ∈ B, x ∈ f −1 (B), U ∩ f −1 (B) = ∅, x ∈ f −1 (B). (iii) ⇒ (ii). A◦ ⊂ A ⊂ f −1 (f (A)), A◦ , A◦ ⊂ [f −1 (f (A))]◦ . M ◦ = X − X − M ( (1.5.2) 1.3.5), [f −1 (f (A))]◦ = X − X − f −1 (f (A)). (1.5.3) X − f −1 (f (A)) = f −1 (Y − f (A)), (1.5.3) [f −1 (f (A))]◦ = X − f −1 (Y − f (A)). (1.5.4) [f −1 (f (A))]◦ ⊂ X − f −1 (Y − f (A)). (1.5.5) (iii) (1.5.4) (1.5.2) , (1.5.5) N ◦ = Y − Y − N ( 1.3.5), f (A◦ ) ⊂ f (X − f −1 (Y − f (A))) = f (f −1 (Y − Y − f (A))) ⊂ Y − Y − f (A) = (f (A))◦ . · 24 · 1 (ii) ⇒ (i). A , A = A◦ , (ii), f (A) = f (A◦ ) ⊂ (f (A))◦ , f (A) ( 1.3.2), f . . 1.5.3 (i) X Y f ; (ii) X A, f (A) ⊃ f (A). (i) ⇒ (ii). f (A) ⊃ f (A), (i), f (A) , f (A) ⊃ f (A). (ii) ⇒ (i). A X , (ii), f (A) ⊃ f (A) A = A, f (A) ⊃ f (A), f (A) . . . 1.5.4 f X Y , f y ∈ Y X U ⊃ f −1 (y), Y W y∈W −1 f (W ) ⊂ U . f , y ∈ Y X U ⊃ f −1 (y), W = Y − f (X − U ), W Y , 1.5.1 (1.5.1) , y ∈ W , −1 −1 f (W ) ⊂ U . , F X , y ∈ Y − f (F ), f (y) ⊂ X − F , , Y W y ∈ W f −1 (W ) ⊂ X − F , W y (1.5.1) , W ∩ f (F ) = ∅, f (F ) Y . . “” , ( ), . 1.5.1 f X Y , (i) f ; (ii) E ⊂ Y X U ⊃ f −1 (E), X V f −1 (E) ⊂ V ⊂ U V = f −1 (f (V )), f (V ) Y ; (iii) y ∈ Y X U ⊃ f −1 (y), X V f −1 (y) ⊂ V ⊂ U V = f −1 (f (V )), f (V ) Y . (i) ⇒ (ii). X U ⊃ f −1 (E), y ∈ E, f −1 (y) ⊂ U , 1.5.4, Y Wy y ∈ Wy f −1 (Wy ) ⊂ U . V = y∈E f −1 (Wy ), f (V ) = y∈E Wy (f ). V . (ii) ⇒ (iii). . (iii) ⇒ (i). y ∈ Y X U ⊃ f −1 (y), (iii), X V f −1 (y) ⊂ V ⊂ U V = f −1 (f (V )), f (V ) Y . W = f (V ), W Y , y ∈ W f −1 (W ) ⊂ U . 1.5.4, f . . 1.5.1 f . X , Y Sierpiński (Sierpiński space [372] ), Y = {0, 1} {∅, {0}, Y }, 1 · 25 · f : X → Y f (X) = {0}. f . 1.1 (O1)∼(O3) 1.5.1 (ii) (iii), 1 (X, T ), , (X, T ), T = T . 1.2 U (x) (x ∈ X) , 1.3 , U (x). A (N1)∼(N5) (O1)∼(O3) 1.3.4 (1.3.1) 1.4 , , . 1.1.2 . (X, T ), 1.3.1 , (X, T ), T = T . (C1)∼(C4) , 1.3.4 (1.3.1) , 1.3.1 A, A = A A ⊂ X . 1.5 X X , X ( 1.2.1) 0 X ( X ). 1.6 Smirnov 1.7 Niemytzki ( 1.2.2) x 1.3.1 {1/n} . , ? 1.8 R∗ x∗ x ∈ R . 1.9 1.10 A B A ∩ B ⊂ A ∩ B A − B ⊂ A − B, ? . 1.11 X, A1 , A2 , · · ·, ∞ ∞ ∞ ∞ Ai = i=1 1.12 ( Ai+j ∪ . i=1 j=0 . X A, ) 1.13 Ai i=1 . 14 , R 14 . R E 1/2m + 1/3n + 1/5l (m, n, l ) , E d , (E d )d , ((E d )d )d , (E d )d = E d ? 1.14 E E d ? R ( ) ; , . 1.15 X A X U V V ∩ A = ∅. 1.16 D 1.17 A 1.18 A X, X A, D ∩ A B ⊂ X, A B. X, U ⊂ X, U = A ∩ U . A. · 26 · 1 1.19 F x x F 1.20 F 1.21 . 1.22 . 1.23 1.24 1.25 1.26 X Y , F X , f (F ) = {f (F ) : X Y , f ϕ(∆; >) f ◦ ϕ(∆; >) Y x A ⊂ X X f (x). A − {x} x. . δ ∈ ∆, Aδ = {ϕ(δ ) : δ ∈ ∆, δ > δ}, x ϕ(∆; >) x Aδ (δ ∈ ∆) 1.27 . . f x A ⊂ X, A ∈ F X − A ∈ F . f F ∈ F } Y X , . , , Y ? 1.28 f , f 1.29 X ; Y Y . X , f . A FrA (i) FrA ⊂ FrA; (ii) FrA◦ ⊂ FrA; (iii) X = A◦ ∪ FrA ∪ (X − A)◦ . 1.30 Fσ . 2 . , 2.1 (X, T ) , X ⊂ X, X U ∈ T , U = U ∩ X , X U T (O1)∼(O3), T = {U : U = U ∩ X , U ∈ T } X , T (relative topology), (X , T ) (X, T ) (subspace); X X () , (X , T ) (X, T ) (open subspace) ( (closed subspace)). 2.1.1 F ⊂ X ⊂ X, F X X F = F ∩ X , A ⊂ X X A = A ∩ X . F F X , X − F X , U X, X − F = U ∩ X , F = X − (U ∩ X ) = X ∩ (X − U ), X − U X. , A ⊂ X , A = X ∩ F , F X, X − A = X − (X ∩ F ) = X ∩ (X − F ). X − F X, X − A X , A X . A = A ∩ X . A X , A ∩ X X A , A ⊂ A ∩ X . , A X , X F A = F ∩ X , A ⊂ A ⊂ F , A ⊂ F , A ∩ X ⊂ F ∩ X = A. A = A ∩ X . . . A ⊂ X ⊂ X, A X ClX (A), U X , 2.1.1 ClX (A) = Cl(A) ∩ X . Y ⊂ X, U |Y = {U ∩ Y : U ∈ U }, T X , X ⊂ X T |X . f (x) [a, b] , a b , a b [a, b] · 28 · 2 , , [a, b] R . . X, Y , X Y ( 1.5.1), (X, U ), Y X Y f , Y f . “ ”, , . , V Y −1 V V f (V ) X , (O1)∼(O3), V = {V : f −1 (V ) ∈ U } Y , (Y, V ) , V (2.1.1) f Y . X D, , D X ( 0.1 ) (i) D∈D D = X; (ii) D . X Y f , {f −1 (y) : y ∈ Y } X . R X ( xRx, xRx ⇒ x Rx, xRx x Rx ⇒ xRx R), R X , X/R , X . X (X, U ) , X X x , X/R f , X/R (2.1.1) , ( f R : f (x) = f (x ) ⇔ xRx , Y = X/R), (quotient topology), Y (= X/R) (quotient space), f (quotient mapping). X D, Y (= X(D)) (decomposition space), f (natural mapping) (natural quotient mapping). . 2.1.1 1.2.1 Smirnov R+ , {1/n : n = 1, 2 · · ·} , , (2.1.1), Y . , X A, X R A , X − A , X/R (2.1.1), , A X , f : X → X/A X/A. ( 2.1). 2.1.1 , F = {1/n : n ∈ N}, Y R+ /F , f : R+ → R+ /F . 2.1 · 29 · 2.1.2 1.2.2 Niemytzki R , x , , Y . , (2.1.1), , X, (Y, V ) X Y f , X f . “ ”, , . , U X Y V , U (O1)∼(O3), U = {U : U = f −1 (V ), V ∈ V } X , (X, U ) , U f (2.1.2) X . . R2 , {Sε ((x, y)) : > 0} (x, y) , (x, y) R2 (x, y) , , , y . , x, (X, U ), (Y, V ), Z = X × Y , Z = X × Y W , W {U × V : U ∈ U , V ∈ V } , (Z, W ) (X, U ) (Y, V ) . . (Xi , Ti ) (i = 1, 2, · · · , n), X = ni=1 Xi , X W , W n Vi : Vi ∈ Ti , i = 1, 2, · · · , n (2.1.3) i=1 ( (B1) (B2)). , . , , , {(Xγ , Tγ )}γ∈Γ , Γ , X = γ∈Γ Xγ , pγ X Xγ (γ ∈ Γ ) . X pγ , (2.1.2) {W : W = p−1 γ (Vγ ), Vγ ∈ Tγ , γ ∈ Γ } · 30 · 2 X W , W , ⎧ ⎫ ⎨ ⎬ (2.1.4) Vγ : Vγ ∈ Tγ , γ ∈ Γ , γ Vγ = Xγ ⎩ ⎭ γ∈Γ ( (B1) (B2)). , W pγ (γ ∈ Γ ) X [400] , , W (product topology), A. Tychonoff Tychonoff . (X, W ) {(Xγ , Tγ )}γ∈Γ (product space). . ⎧ ⎫ ⎨ ⎬ Vγ : Vγ ∈ Tγ , γ ∈ Γ ⎩ ⎭ γ∈Γ X , (box topology), Tychonoff . , Tychonoff . (2.1.3), (2.1.4), , , . 2.1.3 () n . Rn n R I ω = {(x1 , x2 , · · · , xi , · · ·) : 0 xi 1/i, i = 1, 2 · · ·} [0, 1/i] (i = 1, 2, · · ·) . I ω ( 4.1.1) . (Hilbert cube), {Xγ }γ∈Γ , Γ , Xγ (γ ∈ Γ ) . (2.1.4) , , γ∈Γ Xγ . (2.1.4) . 2.1.2 X Y = γ∈Γ Yγ f Y pγ (γ ∈ Γ ), pγ ◦ f . f . , , , , pγ ◦ f (γ ∈ Γ ) , pγ ◦ f (γ ∈ Γ ) , Uγ Yγ , (pγ ◦ f )−1 (Uγ ) = −1 f −1 (p−1 Y . U Y γ (Uγ )) , pγ (Uγ ) , Y , U p−1 γ (Uγ ) , 2.1 · 31 · −1 (f −1 (U )) (f −1 (p−1 (U ) X γ (Uγ ))) , f . . 2.1.3 f X Y , ϕ Y Z , ϕ ϕ ◦ f . ϕ , ϕ ◦ f . , ϕ ◦ f −1 −1 −1 , U Z , (ϕ ◦ f ) (U ) = f (ϕ (U )) X , , ϕ−1 (U ) Y , ϕ . . 1.4 , . ( 2.1.4) , . 2.1.1 X Y f , x ∈ X X x F , f (F ) = {f (A) : A ∈ F } Y f (x). f , x ∈ X f (x) V , x U f (U ) ⊂ V ( 1.5.1 (v)), F x, x U , F ∈ F , F ⊂ U . , f (F ) , f (F ) f (F ) ⊂ f (U ) ⊂ V , f (F ) f (x). , x ∈ X, V f (x) , x U (x), U (x) x, f (U (x)) f (x) ( F ⊂ V , U ∈ U (x), ), F ∈ f (U (x)) f (U ) ⊂ V , f . . ϕ(∆; >) , ( 2.31). 2.1.4 X = γ∈Γ Xγ F x = {xγ }γ∈Γ F Xγ (γ ∈ Γ ) pγ (F ) Xγ xγ . F → x, pγ , 2.1.1 . , U X x , U U = γ∈Γ p−1 γ (Uγ ), Γ Γ . γ ∈ Γ , pγ (F ) → xγ , pγ (F ) Uγ , F ∈ F pγ (F ) ⊂ Uγ . p−1 γ (Uγ ) ⊃ F , ( 1.4.1 −1 −1 (Fl2)), pγ (Uγ ) ∈ F , γ ∈ Γ , pγ (Uγ ) F ( 1.4.1 (Fl3)). U , U ∈ F , F → x. . ϕ(∆; >) , ( 2.32). 2.1.4, (coordinatewise convergence) (pointwise convergence). , γ ∈ Γ , Xγ = X, X Γ . Γ , X Γ X ω . , I = [0, 1] I ω , I ω , Hilbert [0, 1/i] I (i ∈ N), i∈N [0, 1/i] · 32 · 2 ( 2.1.3) I ω . I ω Hilbert . 2.1.1 X D (upper semicontinuous), D ∈ D U ⊃ D, V , D ⊂ V ⊂ U, V D . 2.1.5 D X X(D) f , . 1.5.1 (iii) . . 2.2 , , . , (axioms of separation). 2.2.1 (T0 ) X x1 , x2 , x2 ∈ / U (x1 )). (, x1 U (x1 ) T0 (T0 -axiom of separation), T0 T0 (T0 -space). . 2.2.1 T0 , T0 (i) X T0 ; (ii) X x1 , x2 , x1 ∈ / {x2 }, x2 ∈ / {x1 }; (iii) X x1 x2 {x1 } {x2 }. (i)⇒ (ii). x1 ∈ {x2 } x2 ∈ {x1 } , x1 x2 , x2 x1 , (i). / {x2 }, x1 (ii)⇒ (i). x1 ∈ U (x1 ) x2 ∈ / U (x1 ). (ii)⇒ (iii). . (iii)⇒ (ii). x1 ∈ {x2 }, x2 ∈ {x1 } , {x1 } ⊂ {x2 }, {x2 } ⊂ {x1 }, {x1 } ⊂ {x2 } = {x2 }, . {x2 } ⊂ {x1 }, {x1 } = {x2 }, (iii). 2.2.2 (T1 ) X x1 , x2 , x1 x2 ∈ / U (x1 ), x2 U (x2 ) x1 ∈ / U (x2 ). U (x1 ) T1 (T1 -axiom of separation), T1 T1 (T1 -space). 2.2 · 33 · X Sierpiński ( 0 {0} T0 , T1 . 1.5.1 ), X = {0, 1} {∅, {0}, X}. 1, 1 0, , . 2.2.2 . X T1 {x} (x ∈ X) 2.2.3 X T1 , A X , x A . x A 2.2.3 (T2 ) X x1 , x2 , x1 U (x1 ), x2 U (x2 ), U (x1 ) ∩ U (x2 ) = ∅. T2 (T2 -axiom of separation) Hausdorff (Hausdorff axiom of separation), T2 (T2 -space) Hausdorff (Hausdorff space). 2.2.1 ( T2 T1 ) 1.3.1 R∗ = R ∪ {x∗ }, R R∗ , {x∗ } R∗ . x∗ x∗ . ∗ ∗ ∗ R T1 , x ∈ R x , R T2 . , T2 ⇒ T1 ⇒ T0 , . T2 , , X T2 . “ ”, . 2.2.4 X T2 , F → x, x = x, 2.2.3, x U (x) x V (x ), U (x) ∩ V (x ) = ∅. F → x, U (x) ∈ F , U (x) ∩ V (x ) = ∅, V (x ) ∈ / F , F x . (), X T2 , x, x U , V , (U, V ), F = {M : M ⊃ U ∩ V, U x F , x F → x . . x , V x }. F , F → x 2.2.4 (T3 ) X F F x, U V , U ⊃ F, x ∈ V U ∩ V = ∅. T3 (T3 -axiom of separation), T3 T3 (T3 -space), T1 T3 (regular space). , T1 + T3 ⇒ T2 , ⇒ Hausdorff, , 2.2.2. · 34 · 2 2.2.2 (Smirnov [372] , T2 ) 1.2.1 Smirnov R+ , T2 . F = {1/n : n = 1, 2, · · ·}, F , 0 ∈ / F , F 0 U V U ∩ V = ∅. 2.2.5 X T3 x ∈ X x x ∈ V ⊂ V ⊂ U. U , V . , U . 2.2.5 T3 , (closed neighborhood base). 2.2.5 (T4 ) X F1 F2 , U1 ⊃ F1 , U2 ⊃ F2 U1 ∩ U2 = ∅. T4 U1 U2 , (T4 -axiom of separation), T4 T4 (T4 -space), T1 T4 (normal space). , T1 + T4 ⇒ T1 + T3 , ⇒ , , 2.2.3. 2.2.3 (Niemytzki [372] , ) 1.2.2 Niemytzki R . , . R , x γ Q, η I, R , Q, I . , U V , U ⊃ Q, V ⊃ I, U ∩ V = ∅. x x ε Sε (x). γ ∈ Q, Sd γ (γ) ⊂ U , I, In = {η : η ∈ I, S1/n (η) ⊂ V }, n ∈ N, (2.2.1) ∞ I= In . (2.2.2) n=1 U ∩ V = ∅, Sd γ (γ) S1/n (η) , (γ − η)2 dγ /n. (2.2.3) γ ∈ Q, εγ > 0, nε2γ = dγ , (2.2.3) (2.2.1) (γ − εγ , γ + εγ ) In (, x R ( )), γ ∈ / I n , Q ⊂ R − I n , Q = R Q ⊂ R − I n , R = R − I n = R − (I n )◦ , (I n )◦ = ∅, In R. (2.2.2) , I , 2.2 · 35 · ( , 1.3.2), , R . R R , (, category method). 2.2.6 X T4 F F U , V F ⊂ V ⊂ V ⊂ U. . T0 , T1 , T2 , T3 T0 , T1 , T2 , T3 (). , , T4 T4 , . 2.2.4 (Tychonoff “” [372] , ) [0, ω1 ] ω1 , [0, ω] ω , . 3 3.2.1 3.1.4 [0, ω1 ] × [0, ω] ( Tychonoff “” (Tychonoff plank), [0, ω1 ] “”, [0, ω] “”) . [0, ω1 ] × [0, ω] − {(ω1 , ω)} ( “” ), Tychonoff “” (deleted Tychonoff plank). A = {(ω1 , y) : y < ω} ( “” ), B = {(x, ω) : x < ω1 } ( “” ). A, B ( , “” ). . U ⊃ A, y < ω, ϕ(y) x > ϕ(y) ⇒ (x, y) ∈ U . ϕ(y) < ω1 , ϕ(y) ω1 , sup{ϕ(y)} < ω1 , x∗ ϕ(y), (x∗ , ω) ∈ B, (x∗ , ω) U . 2.2.6 (T5 ) X A ∩ B = A ∩ B = ∅ A B ( A B (separated)), U V U ⊃ A, V ⊃ B U ∩ V = ∅. T5 (T5 -axiom of separation), T5 T5 (T5 -space), T1 T5 (completely normal space). T5 ⇒ T4 , ⇒ . 2.2.4 . 2.2.7 X . X T5 T4 . X T5 , A X , F1 , F2 A . ( 2.1.1), F1 = F 1 ∩ A, F2 = F 2 ∩ A, F 1 , F 2 F1 , F2 · 36 · X . 2 F 1 ∩ F2 = F 1 ∩ F 2 ∩ A, F1 ∩ F 2 = F 1 ∩ A ∩ F 2 , F 1 ∩ F 2 ∩ A = F1 ∩ F2 = ∅, F 1 ∩ F2 = F1 ∩ F 2 = ∅. T5 , U , V , U ⊃ F1 , V ⊃ F2 U ∩ V = ∅, A U ∩ A ⊃ F1 , V ∩ A ⊃ F2 . U ∩ A, V ∩ A A , A T4 . , X T4 , A, B X A ∩ B = A ∩ B = ∅. G = X − (A ∩ B), G ∩ A, G ∩ B G U ⊃ G ∩ A, V ⊃ G ∩ B, . , G U V U ∩ V = ∅. G X , U , V X . G = X − (A ∩ B) = (X − A) ∪ (X − B), U ⊃ G ∩ A = (X − B) ∩ A ⊃ A ∩ A = A. V ⊃ B, X T5 . . , (hereditarily normal space). P (hereditary property) P T0 , T1 , T2 , T3 . 2.2.4 P. T4 . “ X , X .” T0 (T1 , T2 , T3 , ) T0 (T1 , T2 , T3 , ) (, 2.9 2.10, ). ( 2.3.4). , , T3 , T4 , T5 , T3 , , T3 . 2.3 2.3.1 (weight), w(X). X (cardinal number) ℵ0 (second 2.3 · 37 · axiom of countability) (second countable space), . X x X (character), χ(x, X); X , χ(X). ℵ0 (first axiom of countability) (first countable space), . X U = {Uα : α ∈ A} X (covering), ∪{Uα : α ∈ A} = X. U (), () ; A () , () ; U U (U ⊂ U ) , U U (subcovering). X , X Lindelöf . X , X (separable space). 2.3.1 (i) X x A ⊂ X , , A − {x} x; (ii) A A (iii) x {xn } A; , {xn } x. (i) , 1.25. (ii) A , X − A , X − A x X − A, x ∈ A, (i), (X − A) − {x} = X − A x , A. (iii) . . 2.3.1 (i), (ii) Fréchet [125] (Fréchet space), [125] (sequential space). ⇒ Fréchet ⇒ . . , . 2.3.2 . U X , U ∈ U , x(U ) ∈ U , A = {x(U ) : U ∈ U } . A X, X − A , U , . . 2.3.3 Lindelöf . V = {Vα }α∈A X , U X . Vα (α ∈ A) U ∈ U , U U (U ⊂ U ) X. U ∈ U , α(U ) ∈ A U ⊂ Vα(U) , V = {Vα(U) : U ∈ U } . . · 38 · 2 R (a, b) , a, b , , R , R Lindelöf . 2.3.1 ( [372] , ) X , , X , (finite complement topology). () , X. . B, T1 , B x () {x}. de Morgan (X − {x}), X − {x} , X − {x} , . 2.3.2 ( [372] , Lindelöf ) 2.2.4 ω1 B(ω1 ) = {(β, ω1 ] : β < ω1 } , [0, ω1 ], [0, ω1 ] . [0, ω1 ] . U [0, ω1 ] , ω1 ∈ U1 ∈ U , β1 = min{β : (β, ω1 ] ⊂ U1 }, β1 ∈ / U 1 , β1 ∈ U 2 ∈ U ; β2 = min{β : (β, β1 ] ⊂ U2 }, β2 ∈ / U 2 , β2 ∈ U 3 ∈ U . V (ω1 ) = (β1 , ω1 ], V (β1 ) = (β2 , β1 ], V (β2 ) = (β3 , β2 ], · · · . V = {V (ω1 )}∪{V (βn ) : n ∈ N}∪{{0}} [0, ω1 ] , · · · < β3 < β2 < β1 . , {β1 , β2 , β3 , · · ·} , [0, ω1 ] , , U V U . [0, ω1 ), , Lindelöf . α ∈ [0, ω1 ), α = 0, β(α) < α, V = {{0}} ∪ {(β(α), α] : 0 < α < ω1 } . , [0, ω1 ), [0, ω1 ] . , 1.3.1 R∗ , , R∗ . , Lindelöf 2.3.4. 2.3.4 (Tychonoff [399] ) Lindelöf . A, B Lindelöf X . , x ∈ A, U (x), U (x) ∩ B = ∅, U = {U (x) : x ∈ A} A; , y ∈ B, V (y), V (y) ∩ A = ∅, V = {V (x) : x ∈ B} B. U ∪ V ∪ {X − (A ∪ B)} X , X Lindelöf , , A B {Un } {Vn }. Un = Un − ∪{V k : k n}, Vn = Vn − ∪{U k : k n}, 2.3 · 39 · Un ∩ Vm = ∅, Vn ∩ Um = ∅ (m n), Un Vm , ∞ Un , U= ∞ V = n=1 , 2.3.1 Vn n=1 A, B. . . 2.3.3 2.3.4 . . ( ) ( ) . 2.3.2 [0, ω1 ] [0, ω1 ), Lindelöf Lindelöf . ( 2.3.3 2.3.4). ( ) ( ) ( 2.17). Pondiczery [334] , Hewitt [192] Marczewski [276] c ( ) . K. A. Ross A. H. [343] Stone , W. W. Comfort [96] . Lindelöf Lindelöf ( 2.3.3 2.3.4). 2.3.3 ( , Sorgenfrey [371, 372] ) X, [a, b) ( a, b ) B , (half-open interval topology), Sorgenfrey (Sorgenfrey line). B . (a, b), (a, +∞) , (a, b) = ∪{[α, b) : a < α < b}. R , T2 . , x . , x ∈ X, {[x, ai ) : ai } . , {[an , bn )} B , c ∈ X c = an (n = 1, 2, · · ·), c > c, [an , bn ), c ∈ [an , bn ) ⊂ [c, c ). Lindelöf . {Uα }α∈A X , Uα◦ R Uα , R Lindelöf , U = α∈A Uα◦ {Uα◦ }α∈A {Uα◦i }. F = X − U , F , {Uα }α∈A . a ∈ F, a {Uα }α∈A , xa > a (a, xa ) ∩ F = ∅, · 40 · 2 {(a, xa )}a∈F ( F ), ( 2.21), F . . F ∩ H = F ∩ H = ∅ F , H, y ∈ H, ε(x) > 0, ε(y) > 0, H ⊂ X − F, x ∈ F, [x, x + ε(x)) ∩ H = ∅, F ⊂ X − H, [y, y + ε(y)) ∩ F = ∅, [x, x + ε(x)) ∩ [y, y + ε(y)) = ∅. U = ∪{[x, x + ε(x)) : x ∈ F }, V = ∪{[y, y + ε(y)) : y ∈ H}, F , H , U ∩ V = ∅. . 2.2.7, X . 2.3.4 ( , Sorgenfrey [371, 372] ) 2.3.3 X Y = X × X, (half-open square topology), Sorgenfrey (Sorgenfrey plane). . Y E = {(x, y) : x + y = 1}, , , E , Lindelöf . , Lindelöf Lindelöf ( 2.18), Y Lindelöf . . , Lindelöf Lindelöf Y = X × X . E, x + y = 1 Q, I, Q ∪ I = E, Q, I E , Y . 2.2.3 ( , E , 2.2.3 Niemytzki x , ), Q, I . . , . 2.3.5 ( [114] ) ( ) X, . R , Dt (t ∈ R) D = {0, 1}, |R| = c, Dt . c ( 2.3.1 ), D = t∈R Dt , X D . X . , x ∈ X, x 2.4 {Vi }i∈N , x U · 41 · i ∈ N Vi ∩ (X − U ) = ∅. x = {xt }t∈R ∈ X, {Vi }i∈N Ri ⊂ R x x∈X∩ (2.3.1) , , i ∈ N, Wti ⊂ Vi , (2.3.2) t∈R , t ∈ Ri , Wti Dt xt ( {xt }, Dt ); t ∈ R − Ri , Wti = Dt . R , t0 ∈ R − i∈N Ri , U = p−1 x D t0 (xt0 ) , Dt0 , U D , Wti − U (i ∈ N) X t∈R D . , , Wti ∩ (X − U ) = ∅ t∈R (2.3.2) t∈R , (2.3.1), Wti − U = D , X Wti ∩ (D − U ) . t∈R . 2.4 2.2 , (neighborhood separation property). ( ) , (functional separation property). 2.4.1 (Urysohn [403] ) A, B T4 X , f : X → [0, 1] f (x) = 0, x ∈ A; f (x) = 1, x ∈ B. A, B , X − B A , T4 , U1/2 A ⊂ U1/2 ⊂ U 1/2 ⊂ X − B. T4 , U1/4 U3/4 A ⊂ U1/4 ⊂ U 1/4 ⊂ U1/2 ⊂ U 1/2 ⊂ U3/4 ⊂ U 3/4 ⊂ X − B. · 42 · 2 , , k/2n , Γ k/2n , {Uγ }γ∈Γ . , Γ [0, 1], γ < γ A ⊂ Uγ ⊂ U γ ⊂ Uγ ⊂ U γ ⊂ X − B. f : X → [0, 1] f (x) = inf{γ : x ∈ Uγ }, x ∈ 1, Uγ , x∈ / Uγ . , x ∈ B , f (x) = 1; x ∈ A , x ∈ Uγ (γ ∈ Γ ), f (x) = 0. f . x0 ∈ X, f (x0 ) ∈ (0, 1) ( f (x0 ) = 0 1 , ). ε > 0 0 < f (x0 ) − ε < f (x0 ) < f (x0 ) + ε < 1 ( f (x0 ) ε (0,1) ). γ , γ ∈ Γ , 0 < f (x0 ) − ε < γ < f (x0 ) < γ < f (x0 ) + ε < 1. f (x) = inf {γ : x ∈ Uγ }, x0 ∈ Uγ , x0 ∈ / U γ ( f (x0 ) γ ). Uγ − U γ x0 , U (x0 ), f (U (x0 )) ⊂ (f (x0 ) − ε, f (x0 ) + ε). . 2.4.1 “ A, B, f : X → [0, 1] f (x) = 0, x ∈ A; f (x) = 1, x ∈ B” ( ), F4 F4 , 2.4.1 T4 ⇒ F4 . , F4 f , U = f −1 ([0, 1/2)), V = f −1 ((1/2, 1]), U ⊃ A, V ⊃ B U ∩ V = ∅. , , T1 + F4 , “T1 X , A, B, f : X → [0, 1], f (x) = 0, x ∈ A; f (x) = 1, x ∈ B.” f X X Y , X Y g, g(x) = f (x), x ∈ X , g f X ( ) (extension); f g X (restriction). , X = [0, 1], X = (0, 1], (0, 1] f (x) = 1/x [0, 1] ; (0, 1] ϕ(x) = x · sin(1/x) [0, 1] , g(0) = 0, g(x) = ϕ(x), x ∈ (0, 1]. A, B X , f : A ∪ B → [0, 1], f (x) = 0, x ∈ A; f (x) = 1, x ∈ B, f A ∪ B , A, B 2.4 · 43 · A ∪ B . f X ( ) g, −1 −1 U = g ([0, 1/2)), V = g ((1/2, 1]), U , V A, B , X T4 . , . 2.4.2 (Tietze [403] ) X T4 , F , f F R , f X g, sup{|g(x)| : x ∈ X} = sup{|f (x)| : x ∈ F }. µ = sup{|f (x)| : x ∈ F }, F1 = f −1 ([µ/3, ∞)), Urysohn , F2 = f −1 ((−∞, −µ/3]). g0 : X → R µ/3, g0 (x) = x ∈ F1 , −µ/3, x ∈ F2 . sup{|g0 (x)| : x ∈ X} = µ/3, f1 (x) = f (x) − g0 (x), x ∈ F, sup{|f1 (x)| : x ∈ F } = µ1 2µ/3. , gn , fn (i) gn X , fn F ; (ii) f0 (x) = f (x), x ∈ F ; fn (x) = fn−1 (x) − gn−1 (x); (iii) sup{|fn (x)| : x ∈ F } = µn (2/3)n µ, µ0 = µ; (iv) sup{|gn (x)| : x ∈ X} = µn /3. ∞ g(x) = gn (x), x ∈ X. (2.4.1) n=0 n (iii) (iv), |gn (x)| µn /3 (2/3)n · µ/3, ∞ n=0 (2/3) · µ/3 = µ, (2.4.1) ( (i)) , g X . , (ii) f (x) = ∞ gn (x) = g(x), x ∈ F. n=0 g f X sup{|g(x)| : x ∈ X} = µ. . P. Urysohn 1925 . 1915 , H. Tietze ( 4.1.1) [114] . 2.4.1 T1 X (completely regular space) Tychonoff (Tychonoff space), X F x ∈ / F, f : X → [0, 1], f (x) = 0; f (x ) = 1, x ∈ F . · 44 · 2 F3 F3 , F3 T1 . , (F3 ⇒ T3 ), ( F4 ⇒ T4 ), . Tychonoff [400] , , A. Mysior [311] . 2.4.1 ( ) M0 = {(x, y) ∈ R2 : y 0}, z0 = (0, −1) M = M0 ∪ {z0 }, L = R × {0}, Li = [i, i + 1] × {0}, i ∈ N. z = (x, 0) ∈ L, A1 (z) = {(x, y) ∈ M0 : 0 y 2}, A2 (z) = {(x + y, y) ∈ M0 : 0 y 2}. M (i) M0 − L ; (ii) z = (x, 0) ∈ L (A1 (z) ∪ A2 (z)) − B, B z ; (iii) z0 Ui (z0 ) = {z0 } ∪ {(x, y) ∈ M0 : x i}, i ∈ N, M T2 . , z ∈ M0 , z M M . , M F z0 ∈ / F . i0 ∈ N F ∩ Ui0 (z0 ) = ∅, U1 = Ui0 +2 (z0 ), U2 = M − (Ui0 +2 (z0 ) ∪ Li0 ∪ Li0 +1 ), U1 , U2 z0 , F . f : X → [0, 1] f (z0 ) = 1 M . , f (L1 ) = {0}. i ∈ N, Ki = {z ∈ Li : f (z) = 0}. Ki . Kn , Cn ⊂ Kn , z ∈ Cn j ∈ N, F (z, j) = A2 (z)−f −1 ([0, 1/j]), F (z, j) z , F (z, j) , A0 (z) = j∈N F (z, j), A0 (z) A2 (z) A0 (z) = A2 (z) − f −1 (0), f (A2 (z) − A0 (z)) = {0}. A ∪{A0 (z) : z ∈ Cn } L , A . Ln+1 − A ⊂ Kn+1 . t ∈ Ln+1 − A, z ∈ Cn A1 (t) ∩ (A2 (z) − A0 (z)) = ∅, A1 (t) {tm } f (tm ) = 0, m ∈ N. f f (t) = 0, t ∈ Kn+1 . , zi ∈ Ki , zi → z0 , f (z0 ) = 0, . . T1 , F4 ⇒ F3 , ⇒ , . 2.2.3 Niemytzki R , , , . 2.4 · 45 · x p(x, 0) F p (). p Uε (p) Uε (p) ∩ F = ∅, Uε (p) = Sε (p) ∪ {p}, Sε (p) x p ε , q ∈ Sε (p), q x p d(q), R g g(p) = 0, g(q) = d(q), q ∈ Sε (p), ε, q∈ / Uε (p), Sε (p) p ( ). f = g/ε, f : R → [0, 1], f (p) = 0; f (q) = 1, q ∈ F . T2 F2 X x1 , x2 , f : X → [0, 1], f (x1 ) = 0, f (x2 ) = 1, F2 T2 (functional separated T2 -space). , T2 T2 , . Urysohn [403] T2 T2 . Arens (simplified Arens square[372] ). I = (0, 1) , X = (I × I) ∪ {(0, 0), (1, 0)} ⊂ R2 , (i) I × I X ; (ii) (0, 0) Un (0, 0) = {(0, 0)} ∪ {(x, y) : 0 < x < 1/2, 0 < y < 1/n}, (iii) (1, 0) n ∈ N; Un (1, 0) = {(1, 0)} ∪ {(x, y) : 1/2 < x < 1, 0 < y < 1/n}, n ∈ N. Arens . X T2 . (0, 0), (1, 0) , f : X → [0, 1], f (0, 0) = 0, f (1, 0) = 1, X T2 . , Tychonoff Tychonoff . 2.4.3 Tychonoff Tychonoff . , f , x, U x, f (x) = 0, f (x ) = 1 (x ∈ X − U ) f (x, U ) . f1 , f2 , · · · , fn (x, U1 ), (x, U2 ), · · · , (x, Un ) , g(x) = sup{fi (x) : i = 1, 2, · · · , n}, g (x, ni=1 Ui ) . α∈A Xα (x, U ), f , U , x = {xα }α∈A . x ∈ α∈A Xα , Uα xα Xα , Xα Tychonoff , (xα , Uα ) fα , fα ◦ pα (x, p−1 α (Uα )) , pα Xα , p−1 α (Uα ) . · 46 · 2 , T1 T1 . . X, Y , f : X → Y (, embedding), f : X → f (X) . 2.4.4 (Tychonoff [400] ) X Tychonoff X I = [0, 1] . I = [0, 1] Tychonoff , Tychonoff . 2.4.3, Tychonoff , , X Tychonoff , {fα }α∈A X [0, 1] , A, P = α∈A Iα (= I A ), Iα = [0, 1], α ∈ A. x ∈ X, P f (x) = {fα (x)}α∈A X P f , f : X → f (X) . 2.1.2, f . x, y X . X T1 , , fα : X → [0, 1] fα (x) = 0, fα (y) = 1, f (x), f (y) α , f (x) = f (y), f . f −1 , U X x (, U ). X Tychonoff , fα : X → [0, 1] fα (x) = 0; fα (y) = 1, y ∈ X − U . P f (x) V = Uα × Iα , α =α Uα = [0, 1). x ∈ / U , fα (x ) = 1, f (x ) ∈ / V . f (x ) ∈ V x ∈ U , p ∈ V ∩ f (X) ⇒ f −1 (p ) ∈ U . f −1 (V ∩ f (X)) ⊂ U . f −1 f (X) X . f X f (X) ⊂ P . . 2.5 2.5.1 X (connected space), X ; X X ⊂ X (connected), X . , X , X , X . 2.5.1 R . R = F ∪ G, F , G . J = [a, b] J ∩ F = ∅, J ∩ G = ∅, b F G, b ∈ J ∩ G, c = sup(J ∩F ), J ∩F , c ∈ J ∩F . c < b, c , (c, b] ⊂ J ∩G. 2.5 · 47 · J ∩ G , [c, b] ⊂ J ∩ G, c ∈ F ∩ G, F , G . R . R Q . F = {r : r ∈ Q, r > η} ( . η, G = {r : r ∈ Q, r < η} Q), Q = F ∪ G. , R 2.5.1 {Aγ }γ∈Γ X , γ∈Γ Aγ = ∅, ∪{Aγ : γ ∈ Γ } . γ∈Γ Aγ = F ∪ G, F , G γ∈Γ Aγ G , γ ∈ Γ , . x ∈ γ∈Γ Aγ , x ∈ F x ∈ G. x ∈ F , G ∩ Aγ = ∅. F ∩ Aγ = F , G ∩ Aγ = G . F , G Aγ , Aγ = F ∪ G , F ∩ G = ∅, Aγ , . . 2.5.2 A X A ⊂ B ⊂ A, B . B = F ∪ G, F , G B . , F , G B . x ∈ F , x ∈ A ∩ B (A B , 2.1.1), x F F ∩ A = ∅; G ∩ A = ∅. F = F ∩ A, F , G . . G = G ∩ A, A , A = F ∪ G , A , 2.5.3 x X , P X , P . 2.5.1, P . 2.5.2, P . P ⊂ P , P = P , P . . x x ∈ P , 2.5.2 2.5.3 P X ( , component), ( , maximal connected subset); X , X (totally disconnected space). , , , . 2.5.4 X . Xα (α ∈ A) , X = α∈A Xα F , G , (F G) , X . F , x = {xα }α∈A ∈ F . x F . · 48 · 2 x F , . P = {{xα }α∈A : xα = xα , α = α0 }, P ⊂ X Xα0 , P . , P P ∩ F, P ∩ G . x ∈ P ∩ F , P ∩ F = ∅, P , P ∩ G = ∅, P ∩ F = P , P ⊂ F . x F . Q = {{yα }α∈A : yα = xα α }, , Q ⊂ F , Q ⊂ F . , , Q X, F = X, F , F = X, G = ∅. X . . 2.5.1 2.5.4 , n Rn . 2.5.3 X (locally connected), x ∈ X x U , V , x ∈ V ⊂ U ; X . , (, ). . 2.5.2 ( [372] ) R2 f (x) = sin(1/x) (0 < x 1) (0, 0) , (topologist’s sine curve). 2.5.2, , (0, 0) {(0, 0)}, {(0, 0)} . 2.5.4 X (arcwise connected space), a, b, f : [0, 1] → X, f (0) = a, f (1) = b. , , , 2.5.2 . 2.1 A 2.2 Y T2 2 X , f : X → X/A . ? 2.1.1 ? 2.1.2 Niemytzki R Y . ? ? 2.3 ? T1 Y . 2.4() X {x} (x ∈ X) 2.5(!) “ ” . T0 , T1 . T0 , T1 . 2.6 2.7 2 · 49 · y = sinx (x ∈ R) R [−1, 1] . X T2 x ∈ X} . W , Aγ ⊂ Xγ (γ ∈ Γ ). γ∈Γ Aγ = γ∈Γ Aγ . 2.8 {Xγ }γ∈Γ 2.9 T2 T2 2.10 2.11 2.12 X × X (diagonal) ∆ = {(x, x) : . . , Fσ . 2.13 2.14 X , F , G . F ⊂ W ⊂ G 2.15 W X Fσ , X [0, 1] x ∈ X, f (x) > 0}. 2.16 W X Fσ , W = ∞ i=1 Fi , ◦ Fi+1 ⊂ Fi+1 (i = 1, 2, · · ·). 2.17 ( 2.18 Lindelöf 2.19 2.20 ) Lindelöf Fi Fi ⊂ ( ) . . X , X (countable chain condition), CCC, . complement space [372] , ( (countable )). 2.22 Lindelöf , 2.23 2.24 X ,Y X X − Y = A ∪ B, A B ( 2.2.6), A ∪ Y 2.25 E 2 Lindelöf 2.26 X 2.27 f 2.28 . . R2 , . , E R Y, f (x) = y} W = {x : . , , f X . 2.21 . , G ⊃ F , Fσ . X T2 , X Y . , {(x, y) : x ∈ X, y ∈ X × Y . f X F I n (I = [0, 1], n ∈ N) , f X . 2.29 X (discrete [46] ), x ∈ X . {Fn } {Gn } Gn ⊃ Fn (n = 1, 2, · · ·). X , U (x) · 50 · 2 2.30 (Dowker) {Fγ }γ∈Γ X γ ∈ Γ , Uγ ⊃ Fγ , Fγ ⊂ Vγ ⊂ V γ ⊂ Uγ . 2.31 x 2.32 X Y f , {Uγ }γ∈Γ X {Vγ }γ∈Γ γ ∈ Γ , . , x ∈ X X ϕ(∆; >), f ◦ ϕ(∆; >) Y f (x). X = γ∈Γ Xγ ϕ(∆; >) x = {xγ }γ∈Γ ϕ(∆; >) Xγ (γ ∈ Γ ) pγ ◦ ϕ(∆; >) Xγ xγ . 3 . R Heine-Borel , . n Rn . . 3.1 3.1.1 X (compact space bicompact space), X . , Lindelöf ( 2.3.1), Lindelöf , . 2.3.2 , [0, ω1 ] , [0, ω1 ] . , α, [0, α] . ( 1.4.1) X F = {Fγ }γ∈Γ , F , Γ ⊂ Γ , γ∈Γ Fγ = ∅. 3.1.1 . X “X ” “ X X, X”, , de Morgan “X ”, . . 3.1.1. 3.1.1 ( ) . . X A, X U A ⊂ ∪U , U (cover) A. , . 3.1.2 X A X A A. 3.1.1 3.1.2, · 52 · 3 3.1.2 F1 , F2 , · · · , Fk X , F = ki=1 Fi Fi (i = 1, 2, · · · , k) . 3.1.2 , U = X − A, Fγ = X − Uγ (γ ∈ Γ ). de Morgan , 3.1.2 U ⊃ γ∈Γ Fγ U ⊃ γ∈Γ Fγ . A , U , 3.1.2 A , X , . 3.1.3 X , {Fγ }γ∈Γ X , U . U ⊃ γ∈Γ Fγ , Γ ⊂ Γ , U ⊃ γ∈Γ Fγ . 3.1.3 {Fγ }γ∈Γ X , ( Fγ0 ) , U . U ⊃ γ∈Γ Fγ , Γ ⊂ Γ , U ⊃ γ∈Γ Fγ . Fγ0 3.1.3 X, Fγ0 ∩ Fγ (γ ∈ Γ ) Fγ . . 3.1.4 X T2 , A, B , U, V , U ⊃ A, V ⊃ B. x ∈ B. y ∈ A, x = y, T2 , Vx Uy , x ∈ Vx , y ∈ Uy , {Uy }y∈A X k A ⊂ i=1 Uyi . A, 3.1.2, yi ∈ A (i = 1, 2, · · · , k), k k Vx = i=1 Vyi , Ux = i=1 Uyi , x ∈ Vx , A ⊂ Ux . , {Vx }x∈B X B, {Vxj }jn n n V = j=1 Vxj , U = j=1 Uxj , A ⊂ U, B ⊂ V . B. . 3.1.1, 3.1.4 . 3.1.4 T2 . 3.1.5 T2 . A T2 X . x ∈ X −A, 3.1.4 B = {x}, U , V , A ⊂ U, x ∈ V , V ⊂ X − A. A . . 3.1.4 , X T3 , x , . . 3.1.5 A T3 X , B ⊂ X − A, U ⊃ A, V ⊃ B. U , V , 3.1.5 , . 3.1.6 A Tychonoff X , B ⊂ X − A, f f (x) = 0, x ∈ A; f (x) = 1, x ∈ B. X [0, 1] x ∈ A, X [0, 1] fx fx (x) = 0; fx (x ) = 1, x ∈ B. A ⊂ x∈A fx−1 ([0, 1/2)). 3.1.2, x1 , x2 , · · · , xk ∈ 3.1 A, A⊂ · 53 · k −1 i=1 fxi ([0, 1/2)). g(x) = min{fx1 (x), fx2 (x), · · · , fxk (x)}, g(x) X [0, 1] , A ⊂ g −1 ([0, 1/2)), g(x) = 1 (x ∈ B). f (x) = 2 · max{g(x) − 1/2, 0}, f (x) . . . 3.1.7 . f X Y , {Uγ }γ∈Γ Y −1 X . X , , {f (Uγ )}γ∈Γ −1 {f (Uγi )}i=1,2,···,k , X, {Uγi }i=1,2,···,k {Uγ }γ∈Γ , Y , Y . . 3.1.8 T2 . f X T2 Y , F X . 3.1.1, F . Y T2 , , 3.1.7, f (F ) Y . 3.1.5, f (F ) , f . . 3.1.6 T2 . 3.1.7 X T1 T2 T1 ⊃ T2 , (X, T1 ) , (X, T2 ) T2 , T1 = T2 . . 3.1.9 X (i) X ; (ii) X . ⇒ (i). F X , F = {A : A ∈ F } , 3.1.1, , x A (A ∈ F ), 1.4.3, x F . (i) ⇒ (ii). (i), X x, 1.4.3 , x. (ii) ⇒ . U X , , F = {X − U : U ∈ U } . 1.4.1, F ⊃ F . (ii), F , F x, x F , F · 54 · 3 , U ∈ U , x ∈ X − U = X − U. U X ( de Morgan ), U , X . . ( 3.8). ( 2.3.1) . 3.1.2 X N X (network [14] ), x ∈ X x U , N N , x ∈ N ⊂ U; X (network weight), n(X). X , X {{x} : x ∈ X} . , n(X) X w(X) X |X| , n(X) w(X) n(X) |X|. 3.1.1 , n(X) = w(X) . 3.1.3 {Xγ }γ∈Γ , γ = γ , Xγ ∩ Xγ = ∅. X = γ∈Γ Xγ U ⊂ X X , γ ∈ Γ , U ∩ Xγ Xγ . (O1)∼(O3), X . {Xγ }γ∈Γ (topological sum), γ∈Γ Xγ . 3.1.1 Ii (i = 1, 2, · · ·) I = [0, 1], x ∈ [0, 1], ∞ xi Ii . X = i=1 Ii Ii , R x ∈ (0, 1], xi ∈ Ii ; 0, 0i 0j , 0i , 0∗ , X/R = K, f . , K 0∗ ∞ i=1 f ([0i , xi )), xi (i = 1, 2, · · ·) , K 0∗ ℵℵ0 0 = c, w(K) c. , K − {0∗} (0i , Ii ] , B , B = B ∪ {{0∗}} K , n(X) ℵ0 (). n(K) < w(K). , K . 3.1.10 [14] X T2 , n(X) = w(X). n(X) w(X). n(X) = m, m , X T1 , |X| m, X , . m ℵ0 . N m. N (3.1.1) N1 , N2 U1 ⊃ N1 , U2 ⊃ N2 U1 ∩ U2 = ∅, (3.1.1) U1 , U2 ∈ T1 T1 X . (3.1.1) (N1 , N2 ), T1 (U1 , U2 ) , T1 U1 , U2 B, B 3.1 · 55 · B0 . B0 (B1) (B2) ( 1.2.2). B0 (B1) . x ∈ X, U ∈ T1 x ∈ U , , x ∈ V ⊂ V ⊂ U , N1 ∈ N x ∈ N1 ⊂ V , X − V . V x ∈ X − V , N2 ∈ N , x ∈ N2 ⊂ X − V , (N1 , N2 ) (3.1.1) , T1 (U1 , U2 ) , x ∈ U1 ∈ B ⊂ B0 , B0 (B2). B0 . B0 T2 , T2 ⊂ T1 . (X, T2 ) T2 . x1 , x2 ∈ X, x1 = x2 , (X, T1 ) T2 , U , U ∈ T1 x1 ∈ U , x2 ∈ U U ∩ U = ∅. N , N1 , N2 ∈ N x1 ∈ N1 ⊂ U , x2 ∈ N2 ⊂ U , (N1 , N2 ) (3.1.1) , (U1 , U2 ) , U1 , U2 ∈ T2 . (X, T2 ) T2 , 3.1.7, T2 = T1 . , |B0 | m, w(X) n(X). . 3.1.8 T2 , w(X) |X|. 3.1.9 f X T2 Y , w(Y ) w(X). B X , f , {f (U ) : U ∈ B} Y , 3.1.10 . . X 2.3.5 , X , 3.1.9 T2 . X , X X , X , 3.1.9 T2 . 3.1.2 (Alexandroff [9] ) R2 Ci = {(x, y) : y = i, 0 x 1} (i = 1, 2). Z = C1 ∪ C2 , z ∈ Z B(z) (i) z ∈ C2 , B(z) = {{z}}; (ii) z = (x, 1) ∈ C1 , B(z) = {Uk (z)}∞ k=1 , Uk (z) = {(x , y ) : 0 < |x − x | < 1/k} ∪ {z}. , {B(z)}z∈Z (NB1)∼(NB4) ( 1.2.3). Z Alexandroff (Alexandroff’s double lines space). , Z T2 . C2 c , Z; C1 R , Z. Z ( 3.9). , Z , . , · 56 · 3 Z R : C2 , C1 , Z/R Z/C1 . C1 Z/R z ∗ , . Z/R ( 3.1.7). , Z/R T2 , z∗ . 3.1.9 . 3.2 Tychonoff Tychonoff ( 3.2.1) 2.1 Tychonoff 3.5 ). " , , ( Tychonoff , Tukey , N. Bourbaki [57] . A , A A A A . A 3.2.1 (Tukey ) , A0 ∈ A ∈ A , A ⊃ A0 , A = A0 . 3.2.1 (Tychonoff [400, 401] ) . X = γ∈Γ Xγ , Xγ (γ ∈ Γ ) , F X , . Tukey , F0 ⊃ F . F , , x ∈ X, A ∈ F0 , x ∈ A. F0 , k A1 , A2 , · · · , Ak ∈ F0 , An ∈ F0 ; (3.2.1) n=1 A0 ⊂ X, A0 ∩ A = ∅ A ∈ F0 , F0 A0 ∈ F0 . (3.2.2) , γ ∈ Γ , Xγ {pγ (A)}A∈F0 xγ ∈ Xγ , xγ ∈ A∈F0 pγ (A). Wγ Xγ Xγ , . xγ , A ∈ F0 , Wγ ∩ pγ (A) = ∅, p−1 γ (Wγ ) ∩ A = ∅, −1 (3.2.2), pγ (Wγ ) ∈ F0 . (3.2.1), Γ0 ⊂ Γ , γ∈Γ0 p−1 γ (Wγ ) ∈ F0 , γ∈Γ0 p−1 γ (Wγ ) A ∈ F0 . ⎧ ⎫ ⎨ ⎬ −1 pγ (Wγ ) : Γ0 Γ , Wγ xγ ⎩ ⎭ γ∈Γ0 3.3 · 57 · x = {xγ }γ∈Γ ( ), A ∈ F0 , A ∈ F0 , x ∈ A. . x Tychonoff , Tychonoff . J. L. Kelley[231] Tychonoff , . L. E. Ward[406] Tychonoff ( ) . R T2 , 3.2.1, I = [0, 1] T2 ; , T2 ( 3.1.4), Tychonoff , 2 Tychonoff ( 2.4.4) . 3.2.2 . X Tychonoff X T2 3.2.1 Rn A , J = [a, b] ⊂ R A ⊂ J n ⊂ Rn ; f : X → R , f (X) R . 3.2.3 Rn A A . A Rn , Rn T2 , A ( 3.1.5). ∞ A ⊂ i=1 Kin , Ki = (−i, i) i < j Kin ⊂ Kjn , A . i0 A ⊂ Kin0 . J = [−i0 , i0 ], A ⊂ J n , A . , A Rn , , A ⊂ J n , J = [a, b]. 3.2.1, J n , A J n , A ( 3.1.1). . 3.2.1 3.3 ( 3.1.7), . . 1.5 . —— , 3.3.1 [238] p . . . . X , Y , X × Y Y F X ×Y , p(F ) F Y . y0 ∈ / p(F ), F X × Y , x ∈ X, (x, y0 ) ∈ / F , x X Ux y0 Y Vxy0 , (Ux × Vxy0 ) ∩ F = ∅. {Ux }x∈X X n X , {Ux1 , Ux2 , · · · , Uxn }. Vy0 = i=1 Vxi y0 , Vy0 , · 58 · 3 y0 , (X × Vy0 ) ∩ F = ∅, Vy0 ∩ p(F ) = ∅. p(F ) Y . . ( 3.15), Kuratowski . 3.3.1 " X , Y ( 3.16). 3.3.1 [405] X Y f : X → Y (perfect mapping), y ∈ Y, f −1 (y) X . # ( $, 1993), “perfect mapping” , . 3.3.1 , y ∈ Y , f −1 (y) = X ×{y} X X × Y . 3.3.2 f : X → Y X Y . X T2 T3 , Y T2 T3 . −1 X T2 , y1 , y2 ∈ Y (y1 = y2 ), f (y1 ) ∩ f −1 (y2 ) = ∅. f , f −1 (y1 ), f −1 (y2 ) , 3.1.4, X U , V , U ⊃ f −1 (y1 ), f , V ⊃ f −1 (y2 ) U ∩ V = ∅. 1.5.4, Y U , V , y1 ∈ U , y2 ∈ V f −1 (U ) ⊂ U, f −1 (V ) ⊂ V, U ∩ V = ∅, Y T2 . X T3 , F Y , y ∈ / F , f −1 (y) ∩ f −1 (F ) = ∅, f −1 (y) , f −1 (F ) ⊂ X − f −1 (y). 3.1.5, X U , V , U ⊃ f −1 (y), y ∈ V ⊃ f −1 (F ) U ∩ V = ∅. , Y U , V , −1 −1 U , F ⊂ V f (U ) ⊂ U, f (V ) ⊂ V (V F ), U ∩ V = ∅, Y T3 . X , B X , U B , U X . U ∈ U , U = ∪{f −1 (y) : f −1 (y) ⊂ U }, f (U ) = Y − f (X − U ), f , f (U ) Y , V = {f (U ) : U ∈ U }. V Y . (3.3.1) 3.4 k · 59 · y ∈ Y , V y, f −1 (y) ⊂ f −1 (V ). f −1 (y) , U ∈ U , f −1 (y) ⊂ U ⊂ f −1 (V ). (1), f −1 (y) ⊂ U ⊂ U , y ∈ f (U ) ⊂ V , f (U ) ∈ V . . . 2 2.1.1 , D X , f X D , D , ( 2.1.1) 2.1.5, 3.3.2 X(D), . 3.3.3 X D , D , X(D) T2 T3 . X T2 T3 . . 3.3.4 f : X → Y X Y . Y Lindelöf , X Lindelöf . Lindelöf . , . U = {Uα }α∈Λ X . y ∈ Y , f −1 (y) U Uα , Uα Uy , f −1 (y) ⊂ Uy . 1.5.4, Y Uy , y ∈ Uy , f −1 (Uy ) ⊂ Uy . {Uy }y∈Y Y , Y Lindelöf , {Uy i }i∈N , {f −1 (Uy i )}i∈N X , f −1 (Uy i ) ⊂ Uyi (i ∈ N), Uyi U Uα , Uα ( Lindelöf . . 3.3.5 Lindelöf 3.3.1 i ∈ N) U , X Lindelöf . , 3.3.3 . . 3.4 k R , R , . R {(a, b) : a, b }. , R {[a, b] : a < b} ( ), , R , . 3.4.1 . X (locally compact), x∈X · 60 · 3 , (localization). R , . . , ( 3.1.1), . 3.4.1 . , . 3.4.2 T3 X . U x ∈ X , , x C. T3 , x V , x ∈ V ⊂ U ∩ C, V ⊂ C, C , V ( 3.1.1). . % . 3.4.3 T2 X Tychonoff . U x0 ∈ X . , X → [0, 1], f (x0 ) = 0; f (x) = 1, x ∈ X − U . f : , C x0 , V = U ∩ C ◦ . X T2 , C ( 3.1.5), V ⊂ C, V ( 3.1.1). T2 V g : V → [0, 1], ( 3.1.4), Tychonoff , g(x0 ) = 0; g(x) = 1, x ∈ V − V . X f : X → [0, 1], f (x) = g(x), x∈V, 1, x∈X −V. f X . F [0, 1] . 1 ∈ / F , f −1 (F ) = g −1 (F ), g , f −1 (F ) X . 1 ∈ F , f −1 (F ) = . V ⊂ U , f (X − V ) = g −1 (F ) ∪ (X − V ) X . f {1} ⇒ f (X − U ) = {1}, f . . 3.4.2, . 3.4.1 T2 T2 . , T2 . ( 3.1.7). , ( ). . 3.4.4 f X . Y . y ∈Y, 3.4 k · 61 · x ∈ f −1 (y), X , x 3.1.7, f (C) y . . C, f , . 3.4.1 f X Y , A X A = f −1 (B), B ⊂ Y . f A f |A : A → B . E [ 0.2 (i)] A , X F , f (A ∩ F ) = f (A) ∩ f (F ). E = A ∩ F. (3.4.1) f X Y , F X, f (F ) Y . (3.4.1) , f (E) = f (A ∩ F ) f (A). f |A A f (A) = B . . 3.4.5 f X Y . Y , X X . y ∈ Y, f −1 (y) X , X , x ∈ f −1 (y), x Cx . {Cx◦ }x∈X f −1 (y) , {Cx◦1 , Cx◦2 , · · · , Cx◦n }, Cy = ni=1 Cxi n f −1 (y) ⊂ U ⊂ Cy , U = i=1 Cx◦i . f , 1.5.1, X V f −1 (y) ⊂ V ⊂ U , f (V ) Y , y ∈ f (V ) ⊂ f (Cy ). f , f (Cy ) Y ( 3.1.7), f (Cy ) y . Y . , Y , x ∈ X, f (x) = y Uy . 3.4.1, f f −1 (Uy ) f |f −1 (Uy ) f −1 (Uy ) Uy , . 3.3.3 f −1 (Uy ) X , x . X . . , . , . 3.4.2 X , X A X C, A ∩ C C. A , C, A ∩ C C. , . A , A x ∈ / A. X , x C, A ∩ C = ∅. A ∩ C C x, x ∈ / A ∩ C, A ∩ C C. . 3.4.2 [128] X k (k-space), X A X C, A ∩ C C. 3.4.2, 3.4.6 . k . · 62 · 3 3.4.7 k . . A , A x ∈ / A, X , A {xi }, x ( 2.3.1). C = {xi : i ∈ N} ∪ {x}, C , A ∩ C = {xi : i ∈ N} C. . 3.4.8 f k X Y , Y k , k k . A ⊂ Y , Y K, A ∩ K K, A Y . f , f −1 (A) X . C X , f , f (C) Y ( 3.1.7). , A ∩ f (C) f (C). g = f |C : C → f (C) (f C ⊂ X ). g , g −1 (A ∩ f (C)) C, g −1 (A ∩ f (C)) = f −1 (A) ∩ C, f −1 (A) ∩ C C. C X , X k , f −1 (A) X . . 3.4.9 [94] X k X . k ( 3.4.6), 3.4.8, k . , X k , X . X S, S X . X {Kα }α∈Λ . () (& Kα Kα × {α}), , S = α∈Λ Kα . ( 3.1.3), S A ⊂ S S () α ∈ Λ, A ∩ Kα () Kα . S , S X f α ∈ Λ, f |Kα Kα X Kα , f (obvious mapping[171] ). f S X . , F X , f −1 (F ) S . (i) F X , f −1 (F ) ∩ Kα = F ∩ Kα Kα , Kα , f −1 (F ) S; (ii) f −1 (F ) S, f −1 (F ) ∩ Kα Kα , (S ) Kα , f −1 (F ) ∩ Kα = F ∩ Kα Kα (X ) Kα , X k , F X . . k A. Arhangel’skiı̌[18, 20] . 3.5 ( ). , Lindelöf 3.5 · 63 · , , . 3.5.1 X (countably compact space), X . ( 3.1.1), . , [0, ω1 ) ( 3.10), . 3.1.1 , ( 3.18). 3.5.1 X . 3.1.3 , . {Fγ }γ∈Γ X , , U . U ⊃ γ∈Γ Fγ , Γ ⊂ Γ , U ⊃ γ∈Γ Fγ . ( 3.1.9) . 3.5.2 x A ω (ω-accumulation point), x A . , A ω . 2.2.3, T1 A ω . 3.5.2 X (i) X ; (ii) X ω . ⇒ (i). {xn } X , Fn = {xn+i : i = 0, 1, 2, 3, · · ·} (n = 1, 2, · · ·), F = {F n } . 3.5.1, , x F n , x {xn } ( 1.4.7). (i) ⇒ (ii). A X , A {xn }, {xn } A ω . (ii) ⇒ . {Fn } X , n F = Fi : n = 1, 2, · · · . i=1 xn ∈ ni=1 Fi (n = 1, 2, · · ·). {xn }, , x , x {xn } ; , , ω x . {xn } x. x ∈ Fn (n = 1, 2, · · ·). 3.5.1, X . . · 64 · 3 2.2.3, . 3.5.1 X T1 , X . 3.5.3 X (sequentially compact), X . , [0, ω1 ) ( 3.10), . , 3.5.1 3.6.2 βN. 3.5.1 ( [372] ) I = [0, 1] . α ∈ I, Dα = {0, 1}, , Dα . X = α∈I Dα . Tychonoff ( 3.2.1), X . X . n ∈ N, xn ∈ X pα (xn ) = α n , X , X {xn } α ∈ I, pα : X → Dα . , {xnk } {xn } , x ∈ X. α ∈ I, 2.1.4, Dα {pα (xnk )}k∈N pα (x). β ∈ I k , pβ (xnk ) = 0; k , pβ (xnk ) = 1. {pβ (xnk )}k∈N 0, 1, 0, 1, · · ·, , . X . , 3.5.2 . 3.5.3 . X , X [ 2.3.1 (iii)], . 3.5.4 . 3.5.4 X (pseudo-compact), X . 3.5.5 . f X , Un = {x : |f (x)| < n} (n = 1, 2, · · ·), {Un : n = 1, 2, · · ·} X . X , {Un1 , · · · , Unk }. |f (x)| < max{n1 , n2 , · · · , nk }, x ∈ X . X . . 3.5.5 , 3.5.2. 3.5.2 ( [372] [372] , ) X , x0 ∈ X. X ∅ x0 X , (particular point topology). X , (, X x ∈ X ) . 3.5.2 X . X , X . X 3.5 · 65 · . Sierpiński 1.5.1 ) . T0 , T4 . T4 . R {(a, +∞) : a ∈ R} R , Rr . (right order topology), R , Rr T0 . Rr , Rr T4 . Rr , Rr . Rr {(−n, +∞)}n∈N , Rr . 3.5.6 [193] . , Tietze ( 2.4.2) . 3.5.1 (Tietze ) X T4 , F , f F R , f X . arctan f F , ( | arctan f | < π/2. Tietze , arctan f X ( π/2. G = {x : |Φ(x)| = π/2}, ) Φ, |Φ| G X F , Urysohn X [0, 1] g(F ) ⊂ {1}, g(G) ⊂ {0}. Φ = g · Φ, X Φ , g, |Φ | < π/2 Φ (x) = arctan f (x), x ∈ F. ϕ = tan Φ f X ( ) . . 3.5.6 X , 3.5.2, {xn } , . {xn : n = 1, 2, · · ·}. X, X . f f (xn ) = n(n = 1, 2, · · ·). 3.5.1, f X ϕ, ϕ . X . . 3.5.2 Rr , 3.5.6 T4 . , , . , , ( ), . . · 66 · 3 (i) T2 , T2 , T2 ( 3.10), [0, ω1 ] T2 , T2 ( 3.23), ( 3.11). [0, ω1 ) [0, ω1 ) × [0, ω1 ] (ii) ( 3.2.1), . E. Čech “ ?” J. Novák[321] Tychonoff , , [114] 3.10.19. , , ( [114] p. 208). . . J. Dieudonné 1944 . X U = {Uα }α∈A (locally finite[2] ), x ∈ X, x U (x) U (x) ∩ Uα = ∅, α ∈ A . V = {Vβ }β∈B U = {Uα }α∈A (refinement), V Vβ U Uα ; V , V U (refinement of a covering). 3.5.5 [106] X (paracompact), X . , , . , , , . 3.5.7 . F X , V = {Vα }α∈A F . F Vα , X Uα , Vα = Uα ∩ F . U = {Uα }α∈A , U ∪ {X − F } X , , {Wβ }β∈B , {Wβ ∩ F }β∈B F V , F . . T2 . . 3.5.2 ∪{U : U ∈ U }. U (), U ⊂ U , ∪{U : U ∈ U } = ∪{U : U ∈ U } ⊂ ∪{U : U ∈ U } , . x∈ / ∪{U : U ∈ U }, U , x V (x) U U , U1 , U2 , · · · , Un , x∈ / ∪{U : U ∈ U } ⇒ x ∈ / X− n i=1 U i n U i, i=1 x U1 , U2 , · · · , Un , x W (x) = 3.5 V (x) ∩ (X − · 67 · n i=1 U i ) ∪{U : U ∈ U } , x ∈ / ∪{U : U ∈ U }. ∪{U : U ∈ U } ⊃ ∪{U : U ∈ U }. . 3.5.2 U (), U ⊂ U , ∪{U : U ∈ U } . 3.5.3 X , A, B , x ∈ B, Ux , Vx , A ⊂ Ux , x ∈ Vx Ux ∩ Vx = ∅, U , V , A ⊂ U, B ⊂ V U ∩ V = ∅. {X − B} ∪ {Vx }x∈B X , , {Ws }s∈S . S1 = {s : s ∈ S, Ws ⊂ Vx x ∈ B }. Vx ⊂ X − Ux , V x ⊂ X − Ux ⊂ X − A, A∩V x = ∅, A∩W s = ∅ (s ∈ S1 ) B ⊂ s∈S1 Ws . 3.5.2, Ws = s∈S1 Ws . s∈S1 U = X − s∈S1 W s . U V = s∈S1 Ws 3.5.3 . . 3.5.8 [106] T2 . 3.5.3 A , T2 , 3.5.3 , T2 . , . . 3.5.7, 3.5.8 ( 3.1.1 3.1.4). , . 3.5.9 Lindelöf . , . 3.5.10 . . , X , X U , X , V U, V , V V1 , V2 , · · · , Vn , · · ·, n−1 Vn − Vi = ∅ (n = 2, 3, · · ·). i=1 x1 ∈ V1 , n (n = 2, 3, · · ·), xn ∈ Vn − n−1 i=1 Vi , {xn } (, x , x , Vn , V ). 3.5.2 X . . · 68 · 3 , , ( [60] [417] [265] ), 3.5.10 . 6.5 . 3.6 , . , . , , (i) “−∞” “+∞”, , . , (−1, 1) ( f : x → x/(1 + |x|)), −1, 1, [−1, 1]. −∞ +∞ −1 1 f . (ii) , , “∞” . , . “∞” , , , “∞” . 3.6.1 (compactification) (f, Y ), Y ,f X Y (f (X) = Y ), Y T2 , (f, Y ) T2 . , X f (X) , Y X . X Y , f : X → f (X) ⊂ Y , (f, f (X)) X . T2 , Tychonoff ) ( 2.4.4) 3.2.2 (Tychonoff X Tychonoff X T2 . 3 f −1 f (X) ⊂ Y f h X ϕ q ϕ(X) ⊂ Z 3.6 · 69 · 3.6.2 (f, Y ), (ϕ, Z) X , (f, Y ) (ϕ, Z), Y Z h, h ◦ f = ϕ, −1 h : Y → Z. ϕ ◦ f : f (X) → Z , ( T2 ) . 3.6.3 [2] X (one point compactification) X ∗ = X ∪ {∞}, (i) X ; (ii) X ∗ U X ∗ − U X . . . 3.6.1 (Alexandroff [2] ) (i) X X ∗ , X ; (ii) X ∗ T2 X T2 ; (iii) X (). 3.6.3 (i), (ii) . ∞ , () (i) , (i) . ∞ , X , X , (ii) . ∞ , (ii) (i) ((i) (i) ), X X , X , (ii) . X ∗ , X . U X ∗ , ∞ U ∈ U , X ∗ − U , , X ∗ . (ii) X ∗ T2 , X T2 T2 ( 3.4.1). X T2 , X ∗ T2 , x ∈ X, x ∞ , 3.4.1, x U , X ∗ − U ∞ . (iii) X ∗ , Y ∗ X , Y ∗ − X = ∞Y . f : X ∗ → Y ∗, f (∞) = ∞Y ; f (x) = x, x ∈ X. f . f, f −1 , f , ∞ Y ∗ . X ∗ − C ∞ , C X , f (C) , f , f (X ∗ − C) = Y ∗ − f (C) Y ∗ . . X X ∗ (i, X ∗ ), i X . 3.6.2, T2 , . 3.6.1 X T2 , A X , A . A , x ∈ A, x A V, X T2 , V , W V A , X · 70 · U 3 W = U ∩ A. A = X, U =U ∩X =U ∩A⊂U ∩A=W ⊂V ( W ⊂ V , V ). V x X , A . . 3.6.2 (f, Y ) X T2 , X X ∗ T2 , (f, Y ) (i, X ∗ ). 3.6.2, f −1 : f (X)(⊂ Y ) → X ∗ ∗ Y . h : Y → X , h(y) = f −1 (y), y ∈ f (X), ∞, y ∈ Y − f (X). h Y X∗ . X ∗ U X , U X X ∗ T2 , 3.6.1, X , h−1 (U ) = f (U ) f (X) . , f (X) . Y T2 f (X) = Y , 3.6.1, −1 f (X) Y , h (U ) Y . X ∗ U X ( ∞ ∈ U ), U = X ∗ − C, C X , h−1 (C) = f (C) f (X) , Y . Y T2 , h−1 (C) Y , h−1 (U ) Y . . . h Y 3.6.1 , ∞ . (0, 1], 0 [0, 1] . (0, 1] f : x → sin(1/x), (0, 1] [0, 1] . “ ” , f ——Stone-Čech . A , |A| A , I = [0, 1] , I A |A| [0, 1] . q ∈ I A q = {xα }α∈A , xα ∈ [0, 1] (α ∈ A), q A [0, 1] , α ∈ A, q(α) = xα . pα I A α (α ∈ A) , pα ◦ q = xα = q(α). 3.6.2 (3.6.1) f A B , y ∈ I B , f ∗ (y) = y ◦ f, (3.6.2) f ∗ I B I A . B y ∈ I B I , y ◦ f A I , f ∗ (y) = y ◦ f I B I A (). 3.6 · 71 · f ∗ (y) = y ◦ f I B I A , I A ( α ∈ A), pα ◦ f ∗ (y) I B ( 2.1.2). (3.6.2) (3.6.1), pα ◦ f ∗ (y) = pα (y ◦ f ) = (y ◦ f )(α) = y ◦ f (α), f (α) ∈ B, y ∈ I B . (3.6.1), y ◦ f (α) = pf (α) ◦ y. I B y f (α) , f∗ = y ◦ f . . y 1 I = [0, 1] y ? IA x y ∈ IB A f - B F (X) X I = [0, 1] . |F (X)| F (X) F (X) , I |F (X)| [0, 1] . Tychonoff F (X) I . , I F (X) T2 . 3.6.4 X I F (X) e (evaluation mapping), x ∈ X, α ∈ F (X), pα ◦ e(x) = α(x). (3.6.3) α ∈ F (X) X [0, 1] , . 3.6.3 . . e X I (3.6.3) F (X) . , pα ◦ e = α, α X , 2.1.2, e X F X [0, 1] . F X (separate points), x, y ∈ X, x = y, f ∈ F f (x) = f (y); X (separate points and closed sets), X A x∈ / A, f ∈ F f (x) ∈ / f (A). , T2 ( 2.4.1) [0, 1] , [0, 1] (, 3.24). · 72 · 3 3.6.4 e X I F (X) , (i) F (X) , e X e(X) ; (ii) F (X) , e . (i) x ∈ X U e(U ) e(x) F (X) I e(X) [ 1.5.2 (iv)], F (X) , x X − U , f ∈ F (X), f (x) ∈ / f (X − U ). V = {y : y ∈ I F (X) , pf (y) ∈ / f (X − U )}. , V I F (X) , e(x) ∈ V , V ∩ e(X) ⊂ e(U ). (ii) x , x ∈ X, x = x , α ∈ F (X), α(x ) = α(x ). 3.6.4 (3.6.3), pα ◦ e(x ) = pα ◦ e(x ), e(x ) = e(x ). . 3.6.3 3.6.4 , . 3.6.3 X Tychonoff , e X I F (X) e(X) . e(X) T2 I F (X) T2 , e(X) = βX. , (e, βX) X T2 . 3.6.5 (J. Dieudonné, 1949) X Tychonoff , X T2 (e, βX) Stone-Čech (Stone-Čech compactification), βX e(X) I F (X) . 3.6.4 (Stone-Čech [79, 379] ) X Tychonoff , Y T2 , f X Y , (e, βX) X Stone-Čech , e(X) −1 Y f ◦ e βX Y . X Y f , F (Y ) F (X) f ∗ f ∗ (α) = α ◦ f, α ∈ F (Y ). (3.6.4) I F (X) I F (Y ) f ∗∗ f ∗∗ (q) = q ◦ f ∗ , q ∈ I F (X) . (3.6.5) e X I F (X) , g Y I F (Y ) , X Tychonoff , 3.6.3, e X e(X) ⊂ βX, Y T2 , g Y F (X) T2 , g(Y ) ). g(Y ) = g(Y ) = βY ( Y , g(Y ) , I f ∗∗ e(X) ⊂ e(X) = βX ⊂ I F (X) −→ I F (Y ) ⊃ βY = g(Y ) = g(Y ) e 6 X 6 g f - Y 3 · 73 · 3.6.2, f ∗∗ , , f ∗∗ ◦ e = g ◦ f , g −1 ◦ f ∗∗ f ◦ e−1 . f ∗∗ ◦ e = g ◦ f . x ∈ X, h ∈ F (Y ), (3.6.1), (3.6.5), (3.6.4), (3.6.3) (1) (5) (4) (3),(1) ph (f ∗∗ ◦ e(x)) = (f ∗∗ ◦ e(x))(h) = (e(x) ◦ f ∗ )(h) = e(x) ◦ f ∗ (h) = e(x)(h ◦ f ) ==== (h ◦ f )(x) = h ◦ f (x) (3),(1) (1) ==== g(f (x))(h) = (g ◦ f (x))(h) = ph (g ◦ f (x)). . 3.6.1 T2 , Stone-Čech . 3.6.5, X Tychonoff . (f, Y ) X T2 , f Tychonoff X T2 Y , −1 3.6.4, f ◦ e h βX Y , 3.6.2 . . 3.6.1 ( Stone-Čech ) [0, 1] (0, 1] , (0, 1] Stone-Čech , (0, 1] T2 [−1, 1] x → sin(1/x), [0, 1] . , Stone-Čech , x → arctan x . 3.6.2 (βN, ) Stone-Čech , N ( ) , T2 , Tychonoff . B. Pospı́šil[338] N Stone-Čech |βN| = 2c (c ), J. Novák[321] βN 2c . βN , βN , N ∪ {x} (x ∈ βN − N) ( [112] p. 244). , [0, ω1 ) [0, ω1 ], [0, ω1 ) Stone-Čech [0, ω1 ] ( 3.25). 3.1 3 . 3.2 {xn } x0 , {x0 } ∪ {xn : n ∈ N} . 3.3 3.4 T1 3.5 . 3.6 3.7 X . , , . , K T2 X . . X {Ui : i = 1, 2, · · · , k} K, · 74 · 3 X {Ki : i = 1, 2, · · · , k} k Ki , K= Ki ⊂ Ui , i k. i=1 3.8 3.1.9 3.9 Alexandroff 3.10 [0, ω1 ) 3.11 [0, ω1 ), [0, ω1 ] , [0, ω1 ) × [0, ω1 ] . . ( 3.1.2) . . ( A = [0, ω1 ) × {ω1 } B = {(α, α) : α < ω1 } 3.12 T2 3.13 A T2 .) . , A , ∩{A : A ∈ A } . 3.14 f X , f , ε > 0, x ∈ X, f (x) > ε. 3.15[310] X , X [178] 3.16 . Y , f : X × Y → Y , f : X × Y → Y . X , Y . 3.17 T1 3.18 . X ). 3.19 3.20 T2 X {Fn } X ( ∞ n=1 Fn = ∅. ( , ). 3.21 X X . 3.22 . 3.23 3.24 Φ T1 3.25 [0, ω1 ) Stone-Čech 3.26 k X X [0, 1] . , , X . β[0, ω1 ) [0, ω1 ]. Y f f X . 3.27 3.28 3.29 X X T2 ( 2.3.1 ) k (f, Y ). . . U = {Uα }α∈A (point-finite), x ∈ X, x ∈ Uα α ∈ A . 3.30 3 · 75 · f : X → Y X Y , Y K, f −1 (K) X . 3.31 f :X →Y X Y (quasi-perfect[306] ) y ∈ Y , f −1 (y) ), Y K, f −1 (K) ( X . 3.32(Wallace [232] ) X1 , X2 , Ai ⊂ Xi (i = 1, 2), W , W ⊃ A1 × A2 , Xi Ui ⊃ Ai (i = 1, 2), ( X1 ×X2 W ⊃ U1 × U2 ⊃ A1 × A2 . 7.2.4). 4 . R, n Rn , , . , , . 4.1 4.1.1 X , x, y ∈ X, ρ(x, y) (M1) ρ(x, y) = 0 x = y; (M2) ρ(x, y) = ρ(y, x); (M3) ρ(x, y) ρ(x, z) + ρ(z, y), z ∈ X (), ρ(x, y) X (, metric), X ρ (, metric space), (X, ρ), X. (M1)∼(M3) (, metric axioms). (M1) () , () ; (M2) ρ(x, y) , x, y ; (M3) , , . 4.1.1 , (M1) (M1 ) ρ(x, y) = 0, x = y, ρ(x, y) X (, pseudo-metric), (X, ρ) (, pseudo-metric space). , , , , , , , . R x, y ρ(x, y) = | x − y |, , R . R (usual metric). , n Rn x = (x1 , x2 , · · · , xn ), y = (y1 , y2 , · · · , yn ) ρ(x, y) = (x1 − y1 )2 + (x2 − y2 )2 + · · · + (xn − yn )2 , 4.1 · 77 · ρ(x, y) ( ), Rn . (Euclidean metric). X, ρ∗ (x, x) = 0, ρ∗ (x, y) = 1, x = y, , (X, ρ∗ ) , (discrete metric space). , R n Rn , ( 4.1), (Lebesgue) ( 4.2) ( 4.1.1) . ∞ 2 4.1.1 () i=1 xi < ∞ x = (x1 , x2 , · · · , xn , · · ·) , (y = (y1 , y2 , · · · , yn , · · ·)) ∞ ρ(x, y) = (xi − yi )2 . (4.1.1) i=1 ρ(x, y) . 2 (4.1.1) , ∞ i=1 (xi − yi ) , (Cauchy) n 2 n n ai b i a2i · b2i , i=1 i=1 . (4.1.2) i=1 ai , bi . (4.1.2) n (ai + bi )2 = i=1 n a2i + 2 i=1 n ai b i + i=1 a2i + 2 i=1 ⎛ =⎝ n n a2i · 1/2 a2i b2i i=1 i=1 n n + i=1 n 1/2 b2i i=1 n + 1/2 ⎞2 b2i (4.1.3) b2i i=1 ⎠ . i=1 , xi ai , −yi bi , n n n 2 (xi − yi )2 xi + yi2 . i=1 n i=1 (4.1.3) i=1 n . n → ∞, , (4.1.3) , n → ∞ , (4.1.3) , . ∞ 2 . i=1 (xi − yi ) · 78 · 4 , ρ(x, y) (M1) (M2), (M3). , (4.1.3) −yi yi , n → ∞, ∞ ∞ ∞ 2 (xi + yi )2 x + y2. (4.1.4) i=1 i=1 i i=1 i a, b, c , a = (a1 , a2 , · · · , an , · · ·), b = (b1 , b2 , · · · , bn , · · ·), c = (c1 , c2 , · · · , cn , · · ·). (4.1.4) ai − ci xi , ci − bi yi , ∞ ∞ ∞ (ai − bi )2 (ai − ci )2 + (ci − bi )2 . i=1 i=1 i=1 ρ(x, y) (M3). ρ(x, y) , (Hilbert space), l2 (l2 -space). 4.1.2 ([38] ) (n1 , n2 , · · · , nk , · · ·) . x = (n1 , n2 , · · · , nk , · · ·), y = (m1 , m2 , · · · , mk , · · ·) ρ(x, y) = 0, x = y, 1/λ, x = y, λ nλ = mλ . ρ(x, y) , , (Baire’s zero-dimensional space). ρ(x, y) (M1) (M2), (M3). x, y, z . ρ(x, y) = 0 , (M3). ρ(x, y) = 1/λ0 , x = (n1 , n2 , · · · , nλ0 −1 , nλ0 , · · ·), y = (n1 , n2 , · · · , nλ0 −1 , mλ0 , · · ·), nλ0 = mλ0 . z = (l1 , l2 , · · · , lλ0 −1 , lλ0 , · · ·). 4.1 · 79 · (i) z λ0 − 1 x , λ1 < λ0 , lλ1 = nλ1 , ρ(x, z) 1/λ1 > 1/λ0 , , ρ(z, y) , ρ(x, y) ρ(x, z) + ρ(y, z). (ii) z λ0 − 1 x, y , λ < λ0 lλ = nλ . ρ(x, z) = 1/λ0 , ρ(x, y) ρ(x, z) + ρ(y, z); ρ(x, z) = 1/λ2 , λ2 > λ0 , lλ0 = nλ0 , mλ0 = nλ0 , lλ0 = mλ0 , ρ(z, y) = 1/λ0 , ρ(x, y) ρ(x, z) + ρ(y, z). ρ(x, y) (M3). , A, (generalized Baire’s zero-dimensional space), N (A). . (X, ρ) , Sε (x0 ) = {x : x ∈ X, ρ(x, x0 ) < ε} x0 (open ball) ( ε (ε-open ball)). R , Sε (x0 ) = (x0 − ε, x0 + ε) x0 ; R2 , Sε (x0 ) x0 , ε ( ). 4.1.1 (X, ρ) . x ∈ X, U (x) = {Sε (x) : ε > 0}, U = ∪{U (x) : x ∈ X} = {Sε (x) : ε > 0, x ∈ X} X . (B1) (B2) ( 1.2.2), (B2) (∪{U : U ∈ U } = X). (B1). Sr (x) ∩ Ss (y) = ∅, z ∈ Sr (x) ∩ Ss (y), t = min{r − ρ(x, z), s − ρ(y, z)}, St (z). St (z) ⊂ Sr (x) ∩ Ss (y). w ∈ St (z), ρ(w, z) < t, (M3), ρ(w, x) ρ(w, z) + ρ(z, x) < t + ρ(z, x) r − ρ(x, z) + ρ(z, x) = r. St (z) ⊂ Sr (x), St (z) ⊂ Ss (y), z ∈ St (z) ⊂ Sr (x) ∩ Ss (y). . , {Sε (x) : ε > 0, x ∈ X} X . ρ X (metric topology). , . R ρ(x, y) =| x−y | R . , Rn Rn (Euclidean topology), Rn . · 80 · 4 4.1.3 () R2 P1 = (x1 , y1 ), P2 = (x2 , y2 ), ρ(P1 , P2 ) = (x1 − x2 )2 + (y1 − y2 )2 , ρ (P1 , P2 ) = max{| x1 − x2 |, | y1 − y2 |}, ρ (P1 , P2 ) = | x1 − x2 | + | y1 − y2 | . ρ, ρ , ρ , R2 . , . O = (0, 0), A = (1, 1), √ ρ(O, A) = 2, ρ (O, A) = 1, ρ (O, A) = 2. ρ R2 , . ρ , ρ , (M1), (M2) , (M3). P3 = (x3 , y3 ). ρ (P1 , P2 ) = max{| x1 − x2 |, | y1 − y2 |} = max{| x1 − x3 + x3 − x2 |, | y1 − y3 + y3 − y2 |} max{| x1 − x3 |, | y1 − y3 |} + max{| x3 − x2 |, | y3 − y2 |} = ρ (P1 , P3 ) + ρ (P3 , P2 ), ρ (P1 , P2 ) =| x1 − x2 | + | y1 − y2 | =| x1 − x3 + x3 − x2 | + | y1 − y3 + y3 − y2 | | x1 − x3 | + | y1 − y3 | + | x3 − x2 | + | y3 − y2 | = ρ (P1 , P3 ) + ρ (P3 , P2 ), , ρ , ρ R2 . ρ R2 . () Sε (P ) = {P : ρ(P, P ) < ε} . Sε (P ) ρ Sε (P ), Sε (P ) ⊂ Sε (P ) ⊂ Sε/2 (P ), ρ . Sε (P ) ⊂ Sε (P ). P = (x , y ) ∈ Sε (P ), | x − x| + | y − y| < ε, a2 + b2 | a| + | b| (x − x)2 + (y − y)2 | x − x | + | y − y |< ε, 4.1 · 81 · ρ(P, P ) < ε, P ∈ Sε (P ). Sε (P ) ⊂ Sε (P ). , Sε (P ) ⊂ Sε/2 (P ). , ρ R2 . , ρ R2 . , Sε (P ) ρ Sε (P ), √ Sε/ (P ) ⊂ Sε (P ) ⊂ Sε (P ). 2 , . . R2 , , R2 (X, ρ∗ ) (ρ∗ (x, x) = 0, ρ∗ (x, y) = 1, x = y), ρ∗ , U (x) = {{x}, X} ( Sε (x) = {x}, 0 < ε 1), . 4.1.1 , {S1/n (x) : n = 1, 2, · · ·} {Sε (x) : ε > 0} U (x), U (x) X . . (M1), , ρ(x, y) = r > 0, x = y. Sr/2 (x), Sr/2 (y) x, y . 4.1.5). T2 . ( 4.1.2 (X, ρ) , , ρ(x, y) X × X . (M3), ρ(x, y) ρ(x, x0 ) + ρ(x0 , y), x0 X , ρ(x, y) − ρ(x0 , y) ρ(x, x0 ). x, x0 , ρ(x0 , y) − ρ(x, y) ρ(x0 , x). (M2), , | ρ(x, y) − ρ(x0 , y) | ρ(x, x0 ). ε > 0, δ(ε) = ε, x ∈ Sε (x0 ) | ρ(x, y) − ρ(x0 , y) |< ε, lim ρ(x, y) = ρ(x0 , y). ρ(x, y) x , x→x0 δ(ε) ε , , y y , x y . . ρ(x, y) X × X . . · 82 · 4.1.2 4 (X, ρ) . x ∈ X A, B ⊂ X D(A, x) = D(x, A) = inf {ρ(x, y)} y∈A x A (distance from a point to a set); D(A, B) = inf x∈A,y∈B {ρ(x, y)} A B (distance from a set to a set). D(x, ∅) = D(∅, x) = 1, D(A, ∅) = D(∅, A) = 1. 4.1.3 A (X, ρ) , , D(A, x) X . (M3), ρ(x, z) ρ(x, y) + ρ(y, z), inf {ρ(x, z)} ρ(x, y) + inf {ρ(y, z)}, z∈A z∈A D(A, x) ρ(x, y) + D(A, y). D(A, x) − D(A, y) ρ(x, y). x, y , D(A, y) − D(A, x) ρ(x, y). , | D(A, y) − D(A, x) | ρ(x, y). y ∈ Sε (x) | D(A, y) − D(A, x) | < ε. D(A, x) X . . , , . 4.1.4 (X, ρ) , A ⊂ X, A = {x : D(A, x) = 0}. 4.1.3, D(A, x) X , {0} , , {0} {x : D(A, x) = 0} X. , {x : D(A, x) = 0} ⊃ A. {x : D(A, x) = 0} ⊃ A. , y ∈ A, Sε (y) Sε (y) ∩ A = ∅, D(A, y) ε, y ∈ {x : D(A, x) = 0}. {x : D(A, x) = 0} ⊂ A. . 4.1.5 . T2 . A, B (X, ρ) . 4.1.4, A = {x : D(A, x) = 0}, B = {x : D(B, x) = 0}. 4.1 · 83 · 4.1.3, D(A, x), D(B, x) X , D(x) = D(A, x) − D(B, x), D(x) X . U = {x : D(x) < 0}, V = {x : D(x) > 0}. U = D−1 ((−∞, 0)), V = D−1 ((0, +∞)) R (−∞, 0), (0, +∞) D , U, V . U ⊃ A V ⊃ B. A ∩ B = ∅, x ∈ A ⇒ x ∈ B, D(A, x) = 0 ⇒ D(B, x) > 0, D(A, x) = 0 ⇒ D(x) < 0 ⇒ x ∈ U, A ⊂ U . B ⊂ V . . . (X, ρ) , A ⊂ X, ρ , (A, ρ) ( , 2.2.7 ), A X . 4.1.5, ( ). 4.1.6 Gδ . 4.1.4, (X, ρ) F = {x : D(F, x) = 0}. n = 1, 2, · · ·, Gn = {x : D(F, x) < 1/n}, D(F, x) X [0, +∞) , [0, 1/n) [0, +∞), Gn . , {x : D(F, x) = 0} = ∞ {x : D(F, x) < 1/n}, n=1 F= ∞ . n=1 Gn , F Gδ . 4.1.3 (perfect), Gδ ; (perfectly normal), , . 4.1.1 . , ( ). ∗ (X, ρ ) , X , . 4.1.7 (X, ρ) , (i) ; (ii) Lindelöf ; (iii) ; · 84 · 4 (iv) ; (v) ; (vi) . (i) ⇒ (ii). 2.3.3. (ii) ⇒ (iii). A X . x ∈ A X Ux Ux ∩ A = {x}. U = {Ux }x∈A ∪ {X − A}. A , U . A X , (ii), X Lindelöf , U . (iii) ⇒ (iv). B X , B . 3.6.1 T2 , B B . 4.1.6), B Gδ ( ∞ B Fσ , B = i=1 Ai , Ai B, X. Ai X , (iii), Ai , B . (iv) ⇒ (v). U = {Uα }α∈A X . α ∈ A, xα ∈ Uα , B = {xα : xα ∈ A} , (iv), B , U . (v) ⇒ (vi). i = 1, 2, · · ·, Fi 1/i . Fi . Tukey ( 3.2.1), Fi Ai (i = 1, 2, · · ·). x, y ∈ Ai , ρ(x, y) > 1/i, Ai S1/2i (x), {S1/2i (x) : x ∈ Ai } . (v) . A , Ai , A = ∞ i=1 Ai X, A = X. , x ∈ X − A, 4.1.4, D(A, x) > 0, i0 D(A, x) > 1/i0 , D(Ai0 , x) D(A, x) > 1/i0 . , x Ai0 1/i0, , Ai0 Fi0 . (vi) ⇒ (i). A = {x1 , x2 , · · · , xn , · · ·} X . U = {Sr (xn ) : r , n = 1, 2, · · ·}. U X . , A , , U . x ∈ X U x, Sr (x) ⊂ U . A X , xi ∈ A ρ(xi , x) < r/3, V = S2r/3 (xi ). ρ(xi , x) < r/3, x ∈ V , x ∈ V, ρ(xi , x ) < 2r/3, ρ(x, x ) ρ(x , xi ) + ρ(xi , x) < 2r/3 + r/3 = r, V ⊂ Sr (x), x ∈ V ⊂ U , U X . . 4.1 · 85 · . X ℵ1 (ℵ1 -compact space), X ; X . (iii), (v) X ℵ1 ( 2.21). (ii) ⇒ (iii) Lindelöf ⇒ ℵ1 ; ⇒ ℵ1 . ( , (X, ρ∗ ) X ). . 4.1.8 (X, ρ) , (i) X (ii) X ; (iii) X ω ; ( (iv) X ; (v) X (vi) X (vii) X ); ( ); ( ); ( ). , (iii), (iv), (v) ( 3.5.2). T1 , (ii), (iii), (iv), (v) ( 3.5.1). , (i), (ii), (iii), (iv), (v) ( 3.5.5 3.5.6). , (iii), (iv), (v), (vi) ( 3.5.3 3.5.4). ( 4.1.5) , , (i) (vi) . , (vii) (i) (vi) . Lindelöf , ( 3.5.9, (vii) (v) ). : , (ii) ⇒ Lindelöf , . A X , A , (ii) A , A , X , A , A . 4.1.7, X Lindelöf . . . () R r Q ( η I), Sε (r) ( Sε (η)) , Q ( I) ( 3.4.1). , ( (X, ρ∗ ) X ). 4.1.4 A (X, ρ) , d(A) = supx,y∈A{ρ(x, y)} A (diameter); , , d(A) = ∞. d(∅) = 0. · 86 · 4 4.1.9 (X, ρ) , ρ (x, y) = min{1, ρ(x, y)}, (X, ρ ) , ρ, ρ . , ρ (M1) (M2). ρ (M3), , x, y, z ∈ X 1 ρ (x, z) > ρ (x, y) + ρ (y, z), ρ (x, y) < 1, ρ (y, z) < 1, ρ (x, y) + ρ (y, z) = ρ(x, y) + ρ(y, z) ρ(x, z), ρ (x, z) > ρ(x, z), . (X, ρ ) . X ρ, ρ . ε > 0, x ∈ X, Sε (x) = {x : x ∈ X, ρ(x , x) < ε}, Sε (x) = {x : x ∈ X, ρ(x , x) < ε}. 0 < ε < 1 , Sε (x) = Sε (x), ρ, ρ . . 1 , , 1. 4.1.5 (X, ρ) (X , ρ ) f (isometry mapping), X x, y ρ(x, y) = ρ (f (x), f (y)). (x = x ⇒ f (x) = f (x )). f , f , . , f X Sr (x) X Sr (f (x)), . , . (metric invariant). ( ). , R R I = (0, 1) , d(R) = ∞, d(I) = 1, , . 4.1.10 {(Xn , ρn )} , (Xn , ρn ) x = {xn }, y = {yn }, 1. X = ∞ n=1 Xn ρ(x, y) = ∞ 1 n=1 2n · ρn (xn , yn ), ρ X , ρ X ρn Xn (n = 1, 2, · · ·) . ρ , X , ρ () ρn Xn ( ). V , U . 4.1 · 87 · V = Sr (x) V , n0 , U 1 U = y : ρn (xn , yn ) < n0 +1 , n n0 + 1 , 2 y ∈ U , 1/2n0 < r. n 0 +1 ∞ 1 1 + . ρ(x, y) n0 +1 n 2 2 2n n=1 n=n +2 1 0 n 0 +1 ∞ ∞ 1 1 1 1 < = 1, = n0 +1 , n n n 2 2 2 2 n=1 n=1 n=n +2 0 ρ(x, y) < 1 1 1 + n0 +1 = n0 . 2n0 +1 2 2 U ⊂ V . V U . , U ∈ U U , U {x : xn ∈ W }, (n) (n) W Xn . (Xn , ρn ) , Sr (xn ) Sr (xn ) ⊂ W (n) ( Sr (xn ) = {yn : ρn (yn , xn ) < r}). ρ , ρ(x, y) = ∞ 1 k=1 1 ρk (xk , yk ) n ρn (yn , xn ). 2k 2 , ρn (xn , yn ) < r, ρ(x, y) < r/2n . x Sr/2n (x) ∈ V , Sr/2n (x) ⊂ U ∈ U . U , U U x ∈ U , V V x ∈ V ⊂ U . U V . , ρ X = ∞ n=1 Xn ρn Xn (n = 1, 2, · · ·) . . ω I ( 2.1.3) ( 4.1.1) ; 4.1.10 . I ω . . , , “ {Xα }α∈A (A ) ”. X = α∈A Xα B = {B} B pα (B) α , pα (B) = Xα . : B Xα Xα , xα ∈ Xα Vα (Vα = Xα ). x = {xα } ∈ α∈A Xα . , {Un (x)} x · 88 · 4 . Un (x) B , A , α0 ∈ A Un (x) (n = 1, 2, · · ·), pα0 (Un (x)) = Xα0 . xα0 Vα0 ⊂ Xα0 , x = {xα } p−1 Un (x). {Un (x)} α0 (Vα0 ) x . . 4.1.11 {(Xα , ρα )}α∈A , X = α∈A Xα . 4.1.9, α ∈ A, x, y ∈ Xα , ρα (x, y) 1. x, y ∈ X, ρ ρ(x, y) = ρα (x, y), 1, x, y Xα . ρ (M1) (M2). , ρ (M3) ρ(x, z) ρ(x, y) + ρ(y, z). , x, y, z ρ(x, z) > ρ(x, y) + ρ(y, z), ρ(x, y) < 1, ρ(y, z) < 1, α ∈ A x, y, z ∈ Xα , ρ(x, y) + ρ(y, z) = ρα (x, y) + ρα (y, z) ρα (x, z) = ρ(x, z), . (M3) . ρ X , (X, ρ) , ( 3.1.3), ρ X ρα Xα . . , . , . 4.1.4 (J. Dieudonn´e [132] , ) E ⊂ R2 , y ( Y ) (1/n, k/n2 ) , n , k . E (i) {(1/n, k/n2)} ; (ii) Y (0, y0 ) {Un (y0 ) : n = 1, 2, · · ·}, Un (y0 ) = {(x, y) : x 1/n, |y − y0 | x}. , E , Y E . , Y , ( , Y , Y ρ (ρ(x, x) = 0, ρ(x, y) = 1, x = y)). {(1/n, k/n2)} , E . 4.2 · 89 · E . (1/n, k/n2 ) E , E , Y E , 4.1.7, E . , E . , X , X . [376] , A. H. Stone . , , , 4.1.5. 4.1.5 ( ) R S = {0} ∪ {1/n : n ∈ N} (). α < ω, Sα S. α<ω Sα , X. X A ( ) X/A Sω , (sequential fan). X ( 4.1.11), f : X → Sω ( 2.1), Sω . f (A) = {a}, Sω a , Sω , Sω . a Sω {Uα }α<ω , f −1 (Uα ) = (Uα − {a}) ∪ A X A . α < ω, Sα A , xα ∈ Sα ∩ (Uα − {a}), {xα : α < ω} X , X − {xα : α < ω} X , U = Sω − f {xα : α < ω} Sω , a, Uα ⊂ U , Sω . 4.2 4.2.1 (X, ρ) (totally bounded), ε > 0, ε X, ε F (ε) X = x∈F (ε) Sε (x). F (ε) ε (ε-dense) X . ∗ (X, ρ ) , X . R () . R [a, b], (a, b) . , . l2 A = {xn : n ∈ N}, xn = (0, 0, 0, · · · , 1, 0, · · ·) ( n 1, 0), ( 4.1.1), A √ ( A d(A) < +∞), A 2; , √ ε 2, F (ε) ε A ( A = x∈F (ε) Sε (x)). . 4.2.1 . · 90 · 4 (X, ρ) , M ⊂ X. ε > 0, F (ε/2) = {x1 , x2 , · · · , xk } ε/2 X. x ∈ M , xi ∈ F (ε/2) ρ(x, xi ) < ε/2. xi {xm1 , xm2 , · · · , xml }, j l, xj ∈ M ρ(xj , xmj ) < ε/2. F = {x1 , x2 , · · · , xl }, F ε M . x ∈ M , M ⊂ X, xi ∈ F (ε/2) ρ(x, xi ) < ε/2, xi xmj , ρ(x, xj ) ρ(x, xmj ) + ρ(xmj , xj ) < ε/2 + ε/2 = ε. . 4.2.2 (X, ρ) , M ⊂ X. (M, ρ) , (M , ρ) . ε/2 M ε M . . 4.2.3 {(Xn , ρn )} , (Xn , ρn ) 1. X = ∞ 4.1.10 ρ, (X, ρ) n=1 Xn (Xn , ρn ) . (X, ρ) . m ∈ N, ∞ ∗ Xm = n=1 An , Am = Xm , An = {x∗n } Xn , n = m. ∗ Xm ( 4.2.1). ρ ( 4.1.10), x∗ , y ∗ ∈ ∗ ⊂ X, ρ(x∗ , y ∗ ) = ρm (x, y)/2m , x = pm (x∗ ), y = pm (y ∗ ). , Xm ∗ F ε/2m (Xm , ρ), pm (F ) ε (Xm , ρm ). (Xm , ρm ) . (Xn , ρn ) . ε > 0, k 1/2k < ε/2, n k, {xn1 , xn2 , · · · , xnm(n) } ε/2 Xn ; n > k, xn0 ∈ Xn . F = {y = (x1j1 , x2j2 , · · · , xkjk , xk+1 , xk+2 , · · ·) : 1 jn m(n), n k}, 0 0 F . F ε (X, ρ). x = (x1 , x2 , · · · , xn , · · ·) X , n k, jn m(n) ρn (xn , xnjn ) < ε/2, F y = (x1j1 , x2j2 , · · · , xkjk , xk+1 , xk+2 , · · ·), 0 0 ρ(x, y) = k 1 n=1 2 ρ (x , xnjn ) + n n n ∞ n=k+1 1 ρ(xn , xn0 ) 2n < ε/2 + ε/2 = ε. F ε X. . . , . {(Xα , ρα )}α∈A , 4.2 (Xα , ρα ) 1, α∈A Xα α∈A Xα (Xα , ρα ) · 91 · 4.1.11 ρ, , A . (X, ρ) ω , (X, ρ) 4.2.4 . ε > 0 F (ε) X = x∈F (ε) Sε (x). , ε0 > 0, , F (ε0 ), X = x∈F (ε0 ) Sε0 (x). 2 x1 ∈ X, X = Sε0 (x1 ), x2 ∈ X − Sε0 (x1 ), X = i=1 Sε0 (xi ), , {x1 , x2 , · · · , xn , · · ·}. , ρ(xi , xj ) ε0 (i = j). ω x0 ∈ X, Sε0 /2 (x0 ) {x1 , x2 , · · · , xn , · · ·} . xn , xm ∈ Sε0 /2 (x0 ), ρ(xn , xm ) ρ(xn , x0 ) + ρ(x0 , xm ) < ε0 /2 + ε0 /2 = ε0 . . (X, ρ) . . 4.2.1 . 4.2.2 (X, ρ) {xn } (Cauchy sequence), ε > 0, k, m, n k , ρ(xn , xm ) < ε. , (X, ρ) . . X ρ, ρ , ρ, ρ , ρ , ρ ( 4.2.1). . 4.2.1 ( ) R {n}, R ρ(x, y) = |x − y| , {n} . R x y . − ρ (x, y) = 1 + |x| 1 + |y| f (x) = x/(1 + |x|) R (−1, 1) , ρ, ρ R . n+l l n 1 = − < , ρ (n + l, n) = 1+n+l 1+n (1 + n + l)(1 + n) n ε > 0, n > [1/ε] = k ([1/ε] 1/ε ), l = 1, 2, · · ·, ρ (n + l, n) < ε. {n} ρ . 4.2.5 (X, ρ) x0 , x0 . X {xn } x0 , Tk {xk , xk+1 , · · ·} , d(Tk ) Tk . x0 ε Sε (x0 ). · 92 · 4 {xn } , x0 . Tk . 4.2.5, 4.2.2 d(Tk ) < ε/2. x0 {xn } , x0 , Sε/2 (x0 ) ∩ Tk = ∅, Tk ⊂ Sε (x0 ), {xn } k 4.1.8, . , . 4.2.3 (X, ρ) (complete metric space), . R, Rn . R , {n/(n + 1)} R , (−1, 1) . R , (−1, 1) , R (−1, 1) , . . 4.2.2 () C[0, 1]. [0, 1] x(t), y(t), ρ(x, y) = max |x(t) − y(t)| , C[0, 1] 0t1 ( 4.1). {xn } C[0, 1] , , , {xn } {xn (t)} [0, 1] : “ ”, {xn (t)} x0 , x0 (t), x0 ∈ C[0, 1]. {xn } C[0, 1] . 4.2.3 () . 4.1.1 l2 , {x(n) } l2 , (n) (n) (n) x(n) = (x1 , x2 , · · · , xk , · · ·). ε > 0, i, (m) (ρ(x m, n > i (n) ,x 2 )) = ∞ , k=1 (m) (n) (m) (xk (n) − xk )2 < ε. (n) (4.2.1) k, (xk − xk )2 < ε, {xk } R , R , {x(n) xk . x = (x1 , x2 , · · · , xk , · · ·), k } 2 (i) ∞ k=1 xk < ∞, x ∈ l2 ; (ii) lim ρ(x(n) , x) = 0. n→∞ 4.2 · 93 · (4.2.1) ∞ k=1 (m) (n) (xk − xk )2 = j k=1 (m) (n) (xk − xk )2 + ∞ (m) k=j+1 (xk (n) − xk )2 < ε, j . , ε, j (m) (xk k=1 , n, (n) − xk )2 < ε. m → ∞, j k=1 j , (n) (xk − xk )2 ε. j → ∞, ∞ k=1 (n) (xk − xk )2 ε. (4.2.2) ( (a + b)2 2(a2 + b2 )) k0 k=1 x2k = k0 (n) (n) (xk − xk + xk )2 k=1 2 k0 (n) (xk − xk )2 + 2 k=1 k0 k=1 (n) (xk )2 , (n) 2 k0 , k0 → ∞ , (4.2.2) ∞ ( k=1 (xk ) ∞ 2 (n) (n) (n) (n) x = (x1 , x2 , · · · , xk , · · ·) ∈ l2 ), k=1 xk , x ∈ l2 , (i). , (4.2.2) ε , ∞ (n) lim ρ(x, x(n) ) = lim (xk − xk )2 = 0. n→∞ n→∞ k=1 , l2 ρ , x(n) → x, , 4.2.6 (n) l2 {x (ii). } , l2 (X, ρ) (X, ρ) . . . . (X, ρ) , 4.2.1, (X, ρ) 4.2.5, (X, ρ) , . . · 94 · 4 ( , (X, ρ) . ), . (X, ρ) , , (X, ρ) , ( 4.1.8). {xn } (X, ρ) . , {xn } {xnk } , (X, ρ) {xn } {xnk }, {xnk } . (X, ρ) , 1 X. S1 {xn } xn , S1 xn n N1 , N1 , n ∈ N1 , xn ∈ S1 . S2 N1 1/2 X. N2 (N2 ⊂ N1 ) ( N1 ), n ∈ N2 , xn ∈ S2 . , Nk , 1/(k + 1) Sk+1 Nk+1 ⊂ Nk , n ∈ Nk+1 , xn ∈ Sk+1 . , nk , nk+1 ∈ Nk+1 , nk+1 > nk . Nk , . i, j k, ni , nj Nk ( N1 ⊃ N2 ⊃ · · · ⊃ Nk ⊃ · · ·), xni , xnj 1/k . {xnk } . . n1 ∈ N 1 , n2 ∈ N 2 , n2 > n1 . [237] 4.2.7 (Cantor ) , (i) Fn+1 ⊂ Fn (n ∈ N); (ii) lim d(Fn ) = 0 {Fn }, ∞ n=1 Fn . n→∞ . (X, ρ) , {Fn } (i), (ii) . n ∈ N, xn ∈ Fn , {xn } . (ii), ε > 0, nε , n > nε , d(Fn ) < ε; (i), n m > nε , xn ∈ Fn ⊂ Fm , xm ∈ Fm , ρ(xn , xm ) d(Fm ) < ε. {xn } . (X, ρ) , {xn } x0 ∈ X, x0 Fn (n = 1, 2, · · ·) . Fn , x0 ∈ ∞ n=1 Fn . ∞ ∞ x0 n=1 Fn , n=1 Fn = {x0 }. y ∈ ∞ n=1 Fn , (ii), ε > 0, nε n > nε , d(Fn ) < ε, x0 , y ∈ Fn , ρ(x0 , y) d(Fn ) < ε. ε , ρ(x0 , y) = 0, y = x0 . 4.2 · 95 · . {xn } (X, ρ) . k, nk , n nk ρ(xnk , xn ) < 1/2k , nk , nk nk+1 (k = 1, 2, · · ·). {Fk }, Fk = S1/2k−1 (xnk ) (k = 1, 2, · · ·), S1/2k−1 (xnk ) = {y : ρ(y, xnk ) < 1/2k−1 }. d(Fk ) 1/2k−2 (k = 1, 2, · · ·), lim d(Fk ) = 0 ( (ii)). k→∞ y ∈ Fk+1 , nk , ρ(y, xnk+1 ) 1/2k , ρ(xnk , xnk+1 ) < 1/2k , ρ(y, xnk ) ρ(y, xnk+1 ) + ρ(xnk , xnk+1 ) < 1/2k + 1/2k = 1/2k−1 , y ∈ Fk , Fk+1 ⊂ Fk (k = 1, 2, · · ·) ( (i)). , ∞ x0 . n=1 Fn = {x0 } . {xn } 1/2k−2 < ε, n > nk , ρ(xnk , xn ) < 1/2k . , ε > 0, k x0 ∈ Fk , ρ(xnk , x0 ) 1/2k−1 , ρ(x0 , xn ) ρ(x0 , xnk ) + ρ(xnk , xn ) 1 1 1 < k−1 + k < k−2 < ε, 2 2 2 lim xn = x0 . (X, ρ) n→∞ . . 4.2.8 (X, ρ) , M ⊂ X (M, ρ) , M X. x ∈ M , Fk = M ∩ S1/k (x)(k = 1, 2, · · ·), {Fk } M Cantor (i), (ii). (M, ρ) , ∞ ∞ , Cantor , k=1 Fk . , k=1 Fk = {x}, x ∈ M . . M = M. 4.2.9 (X, ρ) (M, ρ) M X. 4.2.8 . . M , (M, ρ) (X, ρ) , x ∈ X. M X, x ∈ M. . 4.2.10 {(Xn , ρn )} , (Xn , ρn ) 1. ∞ 4.1.10 ρ, (X, ρ) n=1 Xn . (Xn , ρn ) · 96 · 4 ∞ ∗ (X, ρ) . m ∈ N, Xm = n=1 An ( Am = Xm , An = {x∗n } Xn , n = m) ( 4.2.9). ∗ ∗ ∗ pm = pm |Xm : Xm → Xm , (Xm , ρm ) ∗ ∗−1 {xn }, {p∗−1 m (xn )} Xm . {pm (xn )} {xn } . (Xm , ρm ) . (Xn , ρn ) . {(xin )n∈N }i∈N (X, ρ) , X i (xin )n∈N , n = 1, 2, · · · , {xin }i∈N (Xn , ρn ) , x0n ∈ Xn . 2.1.4 ( 2.32), i 0 0 {(xn )n∈N }i∈N x = (xn )n∈N ∈ X. (X, ρ) . . , , . 4.2.11 {(Xα , ρα )}α∈A , (Xα , ρα ) 1. α∈A Xα 4.1.11 ρ, α∈A Xα . (Xα , ρα ) . [181] 4.2.12 ( ) . A = ∞ (X, ρ) , n=1 An , An A X , : U X , A∩U = ∅. , Cantor ( 4.2.7) (i), (ii) {Fn }, Fn ⊂ An ∩ U, n ∈ N, Cantor ∞ n=1 Fn = ∅, ∞ ∞ ∞ A∩U = An ∩ U = (An ∩ U ) ⊃ Fn = ∅, n=1 n=1 n=1 A X. {Fn }. A1 X, U , A1 ∩ U = ∅. x1 ∈ A1 ∩ U , A1 ∩ U , ε1 0 < ε1 < 1/22 , Sε1 (x1 ) ⊂ A1 ∩ U . A2 X, Sε1 (x1 ) , A2 ∩ Sε1 (x1 ) = ∅. x2 ∈ A2 ∩ Sε1 (x1 ), A2 ∩ Sε1 (x1 ) , ε2 0 < ε2 < ε1 /2, Sε2 (x2 ) ⊂ A2 ∩Sε1 (x1 ). , Sε2 (x2 ) ⊂ Sε1 (x1 ) Sε2 (x2 ) ⊂ A2 ∩U . , {Fn } = {Sεn (xn )} Fn+1 ⊂ Fn d(Fn ) 1/2n (n = 1, 2, · · ·), Cantor (i), (ii). , Fn ⊂ An ∩ U (n = 1, 2, · · ·), {Fn } . . . , T2 . ( 4.18), . , : X (Baire space), X 4.3 · 97 · . 4.2.12 . 4.2.3 . (X, ρ) ( 1.3.4). A = ∞ . n=1 An , An ∞ ∞ ∞ (X − An ), X −A=X − An ⊃ X − An = n=1 n=1 X − An ( 4.10), ∞ n=1 , (X − An ) = ∅. n=1 X − A = ∅. . : . 4.3 (X, ρ) ρ X T , (X, T ). , . , , . , : , ? (metrizable problem). , , . 4.3.1 X (metrizable), X ρ, ρ X . [404] 4.3.1 (Urysohn ) ω I ( 2.1.3) , . U X , U (U, V ), U ⊂ V. (U, V ) , {(U1 , V1 ), (U2 , V2 ), · · · , (Un , Vn ), · · ·}. X ( n ∈ N, 2.3.3 2.3.4), Urysohn ( fn : X → [0, 1] fn (x) = 0, x ∈ U n ; fn (x) = 1, x ∈ X − Vn . 2.4.1), · 98 · 4 f : X → Iω 1 1 f (x) = f1 (x), f2 (x), · · · , fn (x), · · · . 2 n , f ( 2.1.2). f ( x = x ⇒ f (x) = f (x )). X T1 , x W (x), x . , U (Un , Vn ) x ∈ Un ⊂ U n ⊂ Vn ⊂ W (x), fn (x) = 0, fn (x ) = 1. f (x) = f (x ). f −1 . W (x) X x . / W (x), n ∈ N ρ(f (x), f (x )) , x ∈ 1/n , f −1 (S1/n (f (x))) ⊂ W (x), S1/n (f (x)) = {f (x ) : ρ(f (x), f (x )) < 1/n}. f −1 . f X I ω . I ω , X . . Smirnov ( 1.2.1 2.2.2) Urysohn . 4.3.2 X, : (i) X ; (ii) X I ω ; (iii) X . (i) ⇒ (ii) 4.3.1; (ii) ⇒ (iii), I ω , [0, 1/n] , ( 2.17), I ω 2.3.2); (iii) ⇒ (i), ( 4.1.5), , ( ( 4.1.7). . Urysohn . , . , , . , Urysohn . Nagata, Bing . Smirnov σ σ Urysohn . 3.5 ( 3.5.5) , . 2.9 . , U = {Uα }α∈A ( U (x) ∩ Uα = ∅ α ∈ A ( ), x ∈ X x U (x) , 4.1.10 , , ρ(f (x), f (x ) 1/(2n n); 4.1.10 . 4.3 · 99 · α ∈ A) . , . ( ) , U = n∈N Un , Un ( ), U = n∈N Un σ (σ ). , σ . , [374] . 1948 , A. H. Stone , —— Stone . 4.3.3 Stone . Stone . [374] 4.3.3 (Stone ) , σ . {Uα }α∈A (X, ρ) . α ∈ A, Uα,n = {x : D(x, X − Uα ) 1/2n }, n ∈ N, Uα = ∞ n=1 Uα,n . x ∈ Uα,n , y∈ / Uα,n+1 (4.3.1) , (4.3.1) D(x, X − Uα ) − D(y, X − Uα ) > 1/2n − 1/2n+1 = 1/2n+1 , ( |D(x, A) − D(y, A)| ρ(x, y)) x ∈ Uα,n , y ∈ / Uα,n+1 ⇒ ρ(x, y) 1/2n+1 . A ( 0.3 Zermelo (4.3.2) ), ∗ Uα,n = Uα,n − ∪{Uβ,n+1 : β < α, β ∈ A}, α ∈ A; n ∈ N. (4.3.3) α, α ∈ A, α < α α < α, (4.3.3) ∗ Uα∗ ,n ⊂ X − Uα,n+1 Uα,n ⊂ X − Uα ,n+1 . (4.3.4) ∗ ∗ x ∈ Uα,n , y ∈ Uα∗ ,n , α < α , (4.3.3), x ∈ Uα,n ⇒ x ∈ Uα,n , (4.3.4) ∗ , y ∈ Uα ,n ⇒ y ∈ / Uα,n+1 ; α < α , [ (4.3.3) (4.3.4) ] y ∈ Uα ,n , x ∈ / Uα ,n+1 . α < α α < α, (4.3.2) ρ(x, y) 1/2n+1 , ∗ D(Uα,n , Uα∗ ,n ) 1/2n+1. (4.3.5) , ∗ ∪{Uα,n : α ∈ A, n ∈ N} = X. + ∗ Uα,n = {x : D(x, Uα,n ) < 1/2n+4 }, (4.3.6) · 100 · 4 ∼ ∗ Uα,n = {x : D(x, Uα,n ) < 1/2n+3 }. (4.3.7) ∗ + +− ∼ Uα,n ⊂ Uα,n ⊂ Uα,n ⊂ Uα,n ⊂ Uα . (4.3.8) , (4.3.5), (4.3.7) , α, α ∈ A, α = α , ∼ D(Uα,n , Uα∼ ,n ) 1/2n+2. ∼ , (4.3.9) (4.3.6) n∈N {Uα, U σ n : α ∈ A} . σ , Fn = +− Uα,n , n ∈ N. (4.3.9) (4.3.10) α∈A ∼ n ∈ N, {Uα,n : α ∈ A} (4.3.8) Fn , ∼ ∼ Wα,1 = Uα,1 , Wα,n = Uα,n − n−1 Fi (n 2), (4.3.11) i=1 Wα,n (n = 1, 2, 3, · · ·) . ∪{Wα,n : α ∈ A, n ∈ N} = X. +− (4.3.6) (4.3.8), ∪{Uα,n : n ∈ N, α ∈ A} = X. x ∈ X, m +− ∼ x ∈ Uα,m . (4.3.8), x ∈ Uα,m , (4.3.10), x ∈ / Fn (n = 1, 2, · · · , m − 1), (4.3.11), x ∈ Wα,m . {Wα,n : α ∈ A, n ∈ N} σ . x ∈ X, (4.3.6), x ∈ Uα∗0 ,n0 , (4.3.7) S1/2n0 +4 (x) ⊂ Uα+0 ,n0 ⊂ Uα+− ⊂ Fn0 . 0 ,n0 n > n0 , S1/2n0 +4 (x) ∩ Wα,n = ∅ (α ∈ A); n n0 , (4.3.9), S1/2n+3 (x) ∼ Uα,n , ∼ S1/2n0 +4 (x) ⊂ S1/2n+3 (x), Wα,n ⊂ Uα,n , n n0 , S1/2n0 +4 (x) Wα,n . W = n∈N {Wα,n : α ∈ A} σ . S1/2n0 +4 (x) W n0 , W . . , Wα,n ⊂ Uα , W U . 4.3.3 . 4.3 4.3.4 · 101 · ( 3.5.5), . . , 4.3.4, . . 5 , . (X, ρ) , n ∈ N, Un = {S1/n (x) : x ∈ X} X. 4.3.3, Un σ Vn , V = n∈N Vn X σ ( 4.3.5). V , x ∈ X x U , S1/n (x) ⊂ U , Vn x V , V ⊂ S1/n (x), Vn Un . . U X (), x ∈ X, st(x, U ) = ∪{U : U ∈ U , x ∈ X}; A ⊂ X, st(A, U ) = ∪{U : U ∈ U , U ∩ A = ∅}. 4.3.2 U X . V [184] (point-star refines) U , {st(x, V ) : x ∈ X} U ; [398] (star refines) U , {st(V, V ) : V ∈ V } U . 4.3.5 σ . (X, ρ) . n ∈ N, Un = {S1/2n (x) : x ∈ X}. 4.3.3, Un σ , x ∈ X, st(x, Un ) ⊂ S1/n (x) . Vn . Vn Un , x ∈ X, st(x, Vn ) ⊂ st(x, Un ). V = n∈N Vn , x ∈ S1/n (x) ⊂ U , Vn x ∈ X x U , n ∈ N x V , V ⊂ st(x, Vn ) ⊂ st(x, Un ) ⊂ S1/n (x), x ∈ V ⊂ U . V X σ . . Uyrsohn ( 4.3.1) , Tychonoff ( 2.3.4) , Nagata-Smirnov ( 4.3.6), Tychonoff . 4.3.1 σ . X , B X σ . A, B . , x ∈ A, B Ux x ∈ Ux U x ∩ B = ∅, U = {Ux : x ∈ A}, U A. V = {Vy : y ∈ B} B, y ∈ Vy , Vy ∈ B V y ∩ A = ∅. U , V σ B, U = n∈N Un , V = n∈N Vn , Un , Vn , Un = ∪{U : U ∈ Un }, Vn = ∪{V : V ∈ Vn }. Un = {S1/n (x) : x ∈ X}, Un Un . · 102 · 4 ( 3.5.2), U n = ∪{U : U ∈ Un }, V n = ∪{V : V ∈ Vn }. U n B , V n A (n ∈ N) ( 2.3.4), Un = Un − ∪{V k : k n}, Vn = Vn − ∪{U k : k n}, U= n∈N A, B Vn n∈N . Un , V = . . 4.3.2 (X, T ) T0 , {ρn }n∈N X . ρn (x, y) 1 (x, y ∈ X) (i) ρn : X × X → R ( X T ); (ii) x ∈ X, A⊂X x∈ / A, n ∈ N Dn (x, A) = inf{ρn (x, a) : a ∈ A} > 0, X X ρ(x, y) = ∞ 1 n=1 2n ρn (x, y) T . ρ(x, y) X . (M2) (M3) ρ(x, x) = 0 (x ∈ X). X T0 , x, y ∈ X, x ∈ / {y}, y∈ / {x} ( 2.2.1). x ∈ / {y}, (ii) n ∈ N Dn (x, {y}) = inf{ρn (x, a) : a ∈ {y}} > 0. ρn (x, y) > 0, ρ(x, y) > 0. ρ X . ρ T . 4.1.4, D(x, A) = 0 x ∈ A, 4.1.4, A = {x : D(x, A) = 0} A X ρ , A (X, T ) . 4.3 · 103 · x∈ / A, (ii) n ∈ N Dn (x, A) = r > 0, D(x, A) D(x, A) r/2n > 0. , (i) ρn : X × X → R ( (X, T )) , ρ ). 4.1.3 f (x) = D(x, A) (X, T ) . ( , x ∈ A, f (x) ∈ f (A) ⊂ f (A) = {0} ( x ∈ A ⇒ D(x, A) = 0, f (A) = {0}). D(x, A) = 0. . [315, 364] 4.3.6 (Nagata-Smirnov ) X , X σ . 4.1.5 4.3.5 , . . X B = n∈N Bn , Bn = {Bαn }αn ∈An . n, m αn ∈ An , Vαn ,m = ∪{Bαm : Bαm ∈ Bm , B αm ⊂ Bαn }. (4.3.12) , V αn ,m ⊂ Bαn . 4.3.1, X . Urysohn , fαn ,m : X → [0, 1] fαn ,m (X − Bαn ) ⊂ {0}, fαn ,m (V αn ,m ) ⊂ {1}. Bn , x ∈ X U (x) An (x) ⊂ An U (x)∩Bαn = ∅, αn ∈ An −An (x). X ×X {U (x)×U (y)}x,y∈X , U (x) × U (y) gn,m : U (x) × U (y) → R gn,m (x1 , x2 ) = {|fαn ,m (x1 ) − fαn ,m (x2 )| : αn ∈ An (x) ∪ An (y)}, (x1 , x2 ) ∈ U (x) × U (y). αn ∈ / An (x) ∪ An (y) , fαn ,m U (x) U (y) , gn,m (x1 , x2 ) = {|fαn ,m (x1 ) − fαn ,m (x2 )| : αn ∈ An }, (x1 , x2 ) ∈ U (x) × U (y). , gn,m : U (x ) × U (y ) → R , (x1 , x2 ) ∈ (U (x) × U (y)) ∩ (U (x ) × U (y )), gn,m (x1 , x2 ) = gn,m (x1 , x2 ). ρn,m : X × X → R , ρn,m (x1 , x2 ) = gn,m (x1 , x2 ), (x1 , x2 ) ∈ U (x) × U (y). ρn,m , ρn,m (x1 , x2 ) = min{1, ρn,m(x1 , x2 )}, · 104 · 4 ρn,m X ρn,m (x1 , x2 ) 1 (x1 , x2 ∈ X). X {ρn,m }n,m∈N . , 4.3.2 (i). (ii). x ∈ X A ⊂ X, x ∈ / A, B, B ∈ B x ∈ B ⊂ B ⊂ B, A ⊂ X − B. , B = Bαn ∈ Bn , B = Bαm ∈ Bm , αn ∈ An , αm ∈ Am , (4.3.12), Bαm ⊂ Vαn ,m , fαn ,m fαn ,m (x) = 1; fαn ,m (a) = 0 (a ∈ A). gn,m (x, a) 1, ρn,m (x, a) 1 ρn,m (x, a) = 1(a ∈ A). inf {ρn,m (x, a)} = a∈A 4.3.2 (ii). 4.3.2, X . . 4.3.5 4.3.6, . [46] 4.3.7 (Bing ) X X σ . 4.3.6 4.3.7 Bing-Nagata-Smirnov (Bing-Nagata-Smirnov metrization theorem). 1. 4.4 . , 4.1.5 , . , . , . 4.4.1 ( ) 1 1 1 X = {(0, 0)} ∪ 0, + · : i ∈ N, i j ∈ N i i j 1 1 1 1 ∪ 1, :i∈N ∪ 1, + · : i ∈ N, i j ∈ N . i i i j , 1 1 1 0, + · : i ∈ N, i j ∈ N i i j 1 1 1 1, + · : i ∈ N, i j ∈ N i i j 4.4 , q . · 105 · , , Y . A ⊂ X . q −1 (q(A)) , ( ) q(A) . A , q −1 (q(A)) Y T2 . Y . Y F = {(1, 1/i) : i ∈ N}, Y (0, 0) ∈ / F . U, V Y (0, 0) ∈ U, F ⊂ V , U ∩ V = ∅. (0, 0) ∈ U , i0 ∈ N j i i0 , (0, 1/i + 1/i · 1/j) ∈ q −1 (U ). F ⊂ V , j0 i0 j j0 , (1, 1/i0 + 1/i0 · 1/j) ∈ q −1 (V ). y = 1/i0 + 1/i0 · 1/j0 , (0, y) ∈ q −1 (U ) (1, y) ∈ q −1 (V ). q(0, y) = q(1, y) ∈ U ∩ V . . X, Y , f : X → Y (finite-to-one), y ∈ Y , f −1 (y) . , 4.4.1 q, y ∈ Y, q −1 (y) , . 4.4.1[278] X , X , X . U X , A = {As }s∈S U . x ∈ X V (x) A , F , {V (x)}x∈X . s ∈ S, Ws = X − ∪{F : F ∈ F , F ∩ As = ∅}. , Ws F ∈ F, As ( F ). , s ∈ S, ∅. Ws ∩ F = ∅ As ∩ F = (4.4.1) s ∈ S, U (s) ∈ U As ⊂ U (s) Vs = Ws ∩ U (s), {Vs }s∈S U . x ∈ X F , F ( V (x) ) A , (4.4.1) Ws , Vs . {Vs }s∈S . . : X {As }s∈S , X {Vs }s∈S As ⊂ Vs , s ∈ S. · 106 · 4 U = {Uα }α∈A (point-finite), x ∈ X, x ∈ Uα α ∈ A . , . 4.4.2[106] V = {Vα }α∈A U = {Uα }α∈A X , V α ⊂ Uα (α ∈ A). T X , Φ f : A → T f (α) = X α ∈ A, f (α) = Uα f (α) ⊂ Uα . α∈A Φ “<” f1 , f2 ∈ Φ, f1 < f2 , α ∈ A, f1 (α) ⊃ f2 (α) f1 (α) ⊂ Uα , f1 (α) = f2 (α). Φ . Φ Ψ = {fs : s ∈ S}. Ψ . f0 (α) = s∈S fs (α), α ∈ A. f0 ∈ Φ. < , f0 (α) f0 (α) = Uα f0 (α) ⊂ Uα . α∈A f (α) = X. x ∈ X, {Uα }α∈A , x Uα . {α1 , · · · , αk } = {α ∈ A : x ∈ Uα }. αi (1 i k), f0 (αi ) = Uαi , x ∈ f0 (αi ). , i (1 i k), f0 (αi ) ⊂ Uαi , < , si ∈ S, s > si , f0 (αi ) = fs (αi ). s0 = max{s1 , · · · , sk }, f0 (αi ) = fs0 (αi )(1 i k). {fs0 (α) : α ∈ A} X, x ∈ Uα α ∈ {α1 , · · · , αk } fs0 (α) ⊂ Uα , k k x ∈ i=1 fs0 (αi ) = i=1 f0 (αi ). α∈A f (α) = X. f0 ∈ Φ. f0 Ψ . Zorn , Φ f . α ∈ A, f (α) ⊂ Uα , 4.4.2 . , α0 ∈ A f (α0 ) ⊂ Uα0 . , f (α0 ) = Uα0 . F = X − ∪{f (α) : α = α0 }, F F ⊂ f (α0 ). , V , F ⊂ V ⊂ V ⊂ f (α0 ) = Uα0 . f : A → T f (α) = f ∈ Φ f > f , f V, α = α0 , f (α), α = α0 , . . 4.4.3 . f X Y , U X . V = {f (U ) : U ∈ U } Y . y ∈ Y , x ∈ f −1 (y), U (x) U ∈ U , f −1 (y) , U (x) f −1 (y), U (x) Vy , Vy ⊃ f −1 (y). f , 1.5.1, Wy Vy ⊃ Wy ⊃ f −1 (y), f (Wy ) Y Wy = f −1 (f (Wy )), Wy U ∈ U . f (Wy ) 4.4 · 107 · f (U ) Wy U , y f (Wy ) f (U ) . . X U (locally countable), x ∈ X, x U ∈ U . f −1 , f (y) Lindelöf , . 4.4.4 . f X Y , Y −1 −1 ( 2.12). V Y , f (V ) = {f (V )}V ∈V X . , U = {Us }s∈S f −1 (V ). 4.4.2, F = {Fs }s∈S Fs ⊂ Us , s ∈ S. F , 4.4.3, {f (Fs )}s∈S Y V , 4.4.1, Y . . 4.4.5 K (X, ρ) , U ⊃ K, r > 0 Sr (K) ⊂ U , Sr (K) = ∪{Sr (x) : x ∈ K}. f (x) = D(x, X − U ). 4.1.3, f : X → [0, ∞) . 4.1.4 K f (x) > 0, K , r > 0 f (x) r, x ∈ K. Sr (K) ⊂ U . . [299] 4.4.1 X {Wi }i∈N X (development), x ∈ X, x U , i ∈ N, st(x, Wi ) ⊂ U . (developable space). . i ∈ N, Wi = {S1/2i (x) : x ∈ X}, {Wi }i∈N . 4.4.6 X σ , X σ . {Wi }i∈N X . i ∈ N, σ Bi = j∈N Bi,j Wi , Bi,j . B = i∈N Bi , B σ . B X . x ∈ X, x U , 4.4.1, i ∈ N, st(x, Wi ) ⊂ U . Bi Wi , st(x, Bi ) ⊂ st(x, Wi ) ⊂ U . B ∈ Bi x ∈ B ⊂ U. . , . S ⊂ X f : X → Y (saturated set), S = f −1 (f (S)), f −1 (y) ∩ S = ∅, f −1 (y) ⊂ S. 4.4.1[308, 375] . f (X, ρ) Y . y ∈ Y , · 108 · 4 i ∈ N, Ui (y) = S1/i (f −1 (y)) = S1/i (x) x∈f −1 (y) = {x : x ∈ f −1 (y), ρ(x, x ) < 1/i}, (4.4.2) Wi (y) = Y − f (X − Ui (y)), (4.4.3) Vi (y) = f −1 (Wi (y)) ⊂ Ui (y). (4.4.4) f −1 (y) ⊂ Ui (y), y ∈ Y − f (X − Ui (y)) = Wi (y). f , Wi (y) Y y , Vi (y) X f −1 (y) , (4.4.3), (4.4.4) Vi (y) Ui (y) , f −1 (z) ⊂ Ui (y) ⇒ f −1 (z) ⊂ Vi (y). (4.4.2), (4.4.3), (4.4.4), y ∈ Y , j i, Uj (y) ⊂ Ui (y), Wj (y) ⊂ Wi (y), Vj (y) ⊂ Vi (y). (4.4.5) i ∈ N, Wi = {Wi (y)}y∈Y Y . {Wi }i∈N Y . , y ∈ Y , {Wi (y)}i∈N y V y , f −1 (y) ⊂ f −1 (V ). . (4.4.6) f −1 (y) , 4.4.5, i ∈ N, S1/i (f −1 (y)) = Ui (y) ⊂ f −1 (V ). (4.4.4), Vi (y) ⊂ f −1 (V ), Wi (y) = f (Vi (y)) ⊂ V , (4.4.6) . ∃j∈N (4.4.3), (4.4.4), f −1 (y) ⊂ V2i (y). st(y, Wj ) ⊂ Wi (y). f −1 (y) , (4.4.7) 4.4.5, j 2i Uj (y) ⊂ V2i (y). y Wj Wj (z), (4.4.8) Wj (z) ⊂ Wi (y), (4.4.7) . (4.4.4), f −1 (y) ⊂ f −1 (Wj (z)) = Vj (z) ⊂ Uj (z). x ∈ f −1 (y) ⊂ Uj (z), (4.4.2), x ∈ f −1 (z), f −1 (z) ∩ Uj (y) = ∅. (4.4.8) V2i (y) , f −1 (z) ⊂ V2i (y). ρ(x, x ) < 1/j, (4.4.9) 4.4 · 109 · t ∈ Wj (z), f (Vj (z)) = Wj (z), f −1 (t) ∩ Vj (z) = ∅. f −1 (t) ⊂ Vj (z) ⊂ Uj (z). (4.4.2), f −1 (z) ⊂ Uj (z), Vj (z) , ∀ x ∈ f −1 (t), ∃ x ∈ f −1 (z) ⇒ ρ(x, x ) < 1/j 1/2i. (4.4.10) (4.4.9) (4.4.4), f −1 (z) ⊂ V2i (y) ⊂ U2i (y), x ∈ f −1 (z), x ∈ f −1 (y) ρ(x , x ) < 1/2i. (4.4.10) ρ(x, x ) < 1/i. f −1 (t) ⊂ Ui (y). Vi (y) Ui (y) , f −1 (t) ⊂ Vi (y), t ∈ Wi (y). t , Wj (z) ⊂ Wi (y). (4.4.7) . (4.4.6), (4.4.7) {Wi }i∈N Y . ( 4.3.4), 4.4.4, Y . 4.4.6 4.3.6, Y . . 4.4.7 [283] f T1 X Y , X ∂f −1 (y) (y ∈ Y ) . : “ x ∈ X, x {Un (x)}, xn ∈ Un (x), {xn } x .” ( 4.13). . , h : X → R y ∈ Y , h ∂f −1 (y) , {xn } ⊂ ∂f −1 (y) |h(xn+1 )| > |h(xn )| + 1, n ∈ N. Vn = {x : x ∈ X, |h(x) − h(xn )| < 1/2}, {Vn }n∈N , xn ∈ Vn . {Un (y)} y . zn ∈ Vn ∩ f −1 (Un (y)) f (zn ) . z1 = x1 , z2 , z3 , · · · , zn−1 , Wn = (Vn ∩ f −1 (Un (y))) − n−1 f −1 (f (zk )). k=2 f , X T1 , f −1 (f (zk )) , Wn xn . xn f −1 (y) , Wn − f −1 (y) . zn ∈ Wn − f −1 (y). zn . Z = {zn : n ∈ N}, Z . f , f (Z) = {f (zn ) : n ∈ N} Y , {f (zn )} . f (zn ) ∈ Un (y) (n ∈ N), Y . . “ ” “”, ( 3.5.2 ). · 110 · 4 X, Y , f : X → Y (compact mapping) ( (boundary-compact mapping)), y ∈ Y , f −1 (y) (∂f −1 (y)) X . ( 3.3.1). 4.4.8 f T1 X Y , f |F F Y . F ⊂ X f , Y T1 , f −1 (y) X, ∂f −1 (y) ⊂ f −1 (y). y Y , {y} , f −1 (y) , ∂f −1 (y) = ∅ ( 1.3.10), py ∈ f −1 (y). Y E, F = ∪{{py } : y ∈ E} ∪ (∪{∂f −1 (y) : y ∈ Y − E}). F . x ∈ / F , x f −1 (y). , y ∈ E, f −1 (y) , f −1 (y) − {py } x ( {py } ) F ; y ∈ Y − E, f −1 (y) − ∂f −1 (y) x ( A − ∂A = A◦ ) F . F X . f F f |F F Y , y ∈ Y f |F ∂f −1 (y) {py }, f |F . . ( ): f T1 f |F : F → Y X Y , F ⊂ X −1 y ∈ Y , (f |F ) (y) , ∂f −1 (y). [308, 375] 4.4.2 (Morita-Hanai-Stone ) f (X, ρ) Y , (i) Y ; (ii) Y ; (iii) f . (i) ⇒ (ii), ; (ii) ⇒ (iii), 4.4.7 3.5.6 ∂f −1 (y) , 4.1.8 ∂f −1 (y) ; (iii) ⇒ (i), 4.4.8 4.4.1 . . 4.4.9 . f X Y . f , y ∈ Y , x ∈ f −1 (y), {Un (x)} x . {f (Un (x))} y . . . , “ x ∈ f −1 (y)”, A. Arhangel’skiˇı[17] , (almost open mapping): y ∈ Y , x ∈ f −1 (y), x 4.5 · 111 · U (x), f (U (x)) y . , ( 4.19), . 4.4.3 [39] . 4.4.2 4.4.9 . . [177, 335] 4.4.4 (Hanai-Ponomarev ) T0 . X T0 . {Uα }α∈A X . A N (A), , ρ 4.1.2. , N (A) (α1 , α2 , · · ·) = {αn }. N (A) S = {{αn } : {Uαn }n∈N x ∈ X }. f : S → X, f (α) = x, α = {αn } ∈ S {Uαn }n∈N x ∈ X ( X T0 , f ). X , f . f , α = {αn } ∈ S, k ∈ N, f (S1/k (α)) = k Uαn , (4.4.11) n=1 S1/k (α) = {α ∈ S : ρ(α, α ) < 1/k}. α = {αn } ∈ S ρ(α, α ) < , αn = αn , S , f (α ) 1/k, ρ , n k {Uαn }n∈N , f (α ) ∈ kn=1 Uαn = kn=1 Uαn , f (S1/k (α)) ⊂ kn=1 Uαn . , x ∈ kn=1 Uαn , {Uβj : j k + 1} x , α = (α1 , α2 , · · · , αk , βk+1 , βk+2 , · · ·) ∈ S, f (α ) = x ρ(α, α ) < 1/k ( ρ ), x ∈ f (S1/k (α)). (4.4.11) . f . U f (α) = x , α = {αn }. f , {Uαn }n∈N x , Uαi x ∈ Uαi ⊂ U . (4.4.11), f (S1/i (α)) ⊂ Uαi ⊂ U , f . f . {S1/k (α) : k ∈ N, α ∈ S} S , α ∈ S, k ∈ N, (4.4.11), f (S1/k (α)) , f . , f N (A) X . . 4.4.9 4.4.4 T0 , . 4.5 . 1938 A. · 112 · 4 Weil [409] , , . N. Bourbaki [57] . . , 1940 J. W. Tukey[398] , . X X . ( 4.3.2). U X . x ∈ X, st(x, U ) = ∪{U : U ∈ U , x ∈ U }; A ⊂ X, st(A, U ) = ∪{U ∈ U : U ∩ A = ∅}. U , V X , V V U ∈ U V ⊂ U , V U , V < U ; {st(V, V ) : V ∈ V } U , V ∗ U , V < U . U , V X , U ∧ V = {U ∩ V : U ∈ U , V ∈ V } . . 4.5.1 {Uα : α ∈ A} X (U1) X U , α ∈ A (U2) α, β ∈ A, γ ∈ A (U3) α ∈ A, β ∈ A U,V U , Uα < U , U ∈ {Uα : α ∈ A}; Uγ < Uα , Uγ < Uβ ; ∗ Uβ < Uα ; (U4) x, y ∈ X (x = y), α ∈ A Uα x y, {Uα : α ∈ A} X (uniformity), X {Uα : α ∈ A} (uniform space), (X, {Uα : α ∈ A}). X. {Uα : α ∈ A} {Uβ : β ∈ B} (B ⊂ A) (basis of uniformity), α ∈ A, β ∈ B Uβ < Uα . 4.5.1 X {Uβ : β ∈ B} X 4.5.1 (U2)∼(U4). Φ = {Uβ : β ∈ B} X Φ = {Uα : α ∈ A} . β, β ∈ B, Φ ⊂ Φ, β, β ∈ A, Φ (U2), γ ∈ A Uγ < Uβ , Uγ < Uβ . Φ Φ , γ ∈ B Uγ < Uγ , Uγ < Uβ , Uγ < Uβ . Φ (U2). Φ (U3), (U4). , Φ = {Uβ : β ∈ B} (U2)∼(U4). Φ = {U : ∃ β ∈ B Uβ < U }, U X . Uα , Uα ∈ Φ, Φ , β, β ∈ B, Uβ < Uα , Uβ < Uα . Φ (U2), γ ∈ B Uγ < Uβ , Uγ < Uβ , 4.5 · 113 · Uγ ∈ Φ Uγ < Uα , Uγ < Uα . Φ (U2). (U4). , Φ (U1), Φ X . . Φ (U3), 4.5.1 . 4.5.1 (X, ρ) , Un = {S1/3n (x) : x ∈ X}, n ∈ N. ∗ Un+1 < Un (n ∈ N). Φ = {Un : n ∈ N} (U2), (U3). X T1 , x, y ∈ X, x = y, Sε (x) y ∈ / Sε (x). n ∈ N 1/3n < ε, y ∈ / S1/3n (x), st(S1/3n+1 (x), Un+1 ) ⊂ S1/3n (x), Un+1 x y, Φ (U4). 4.5.1, Φ , Φ = {U : Un ∈ Φ Un < U } X . (X, ρ) . 4.5.2 . 4.5.2 () (group) G , x, y ∈ G, xy ∈ G (xy x, y ) (G1) (xy)z = x(yz), x, y, z ∈ G; (G2) e ∈ G xe = ex = x x ∈ G −1 (G3) x ∈ G, x −1 e G , x ∈G −1 xx −1 =x ; x = e. x . . (topological group) G T1 (TG1) f (x, y) = xy G × G → G (TG2) g(x) = x−1 G → G −1 ; . −1 A, B ⊂ G, A = {x : x ∈ A}, AB = {xy : x ∈ A, y ∈ B}, A B {x} {y} , xB Ay. B e , B ∈ B, UB = {xB : x ∈ G} G . Φ = {UB : B ∈ B}. G , Φ G . (NB3) ( B ∈ B, B1 ∈ B 1.2.3), (U2). Φ (U3), st(xB1 , UB1 ) ⊂ xB, x ∈ G. (4.5.1) f (x1 , x2 , x3 ) = x1 x−1 2 x3 . (TG1), (TG2) f : G × G × G → G , f (e, e, e) = e, f (e, e, e) , e B ∈ B, e B1 ∈ B f (B1 × B1 × B1 ) = B1 B1−1 B1 ⊂ B. xB1 x1 B1 ∈ UB1 . x1 B1 ⊂ xB, st(xB1 , UB1 ) ⊂ xB, (4.5.1) . xB1 ∩ x1 B1 = ∅, · 114 · 4 b0 , b1 ∈ B1 ), xb0 = x1 b1 , x1 = xb0 b−1 1 , x1 B1 x1 b (b B1 −1 x1 b = xb0 b−1 1 b ∈ xB1 B1 B1 ⊂ xB. x1 B1 ⊂ xB, (4.5.1) . Φ (U3). G x, y, x−1 y = e. G T1 , e B ∈ B −1 x y ∈ / B. (TG1), (TG2), g(x1 , x2 ) = x−1 , 1 x2 G × G → G g(e, e) = e, g (e, e) , e B, e B1 ∈ B g(B1 × B1 ) = B1−1 B1 ⊂ B. UB1 (U4) . , x, y UB1 x0 B1 , b1 , b2 ∈ B1 x = x0 b1 , y = x0 b2 , −1 x−1 y = (x0 b1 )−1 (x0 b2 ) = b−1 1 x0 x0 b2 −1 = b−1 1 b2 ∈ B1 B1 ⊂ B. . Φ (U4). . 4.5.1, Φ G , G . . 4.5.2 X , {Uα : α ∈ A} (). T = {U : U ∈ X, ∀ x ∈ U, ∃ α ∈ A st(x, Uα ) ⊂ U }, (4.5.2) T X . , ∅ ∈ T , X ∈ T , T ( (O1), (O3)). (O2). U1 , U2 ∈ T , U1 ∩ U2 = ∅. x ∈ U1 ∩ U2 , U1 ∈ T , α1 ∈ A st(x, Uα1 ) ⊂ U1 ; U2 ∈ T , α2 ∈ A st(x, Uα2 ) ⊂ U2 . (U2), γ ∈ A Uγ < Uα1 , Uγ < Uα2 . st(x, Uγ ) ⊂ st(x, Uα1 ) ∩ st(x, Uα2 ) ⊂ U1 ∩ U2 . . 4.5.2 4.5.2 (4.5.2) T X (topology induced by an uniformity). , , T . 4.5.3 T X {Uα : α ∈ A} , (i) {st(x, Uα ) : α ∈ A} (X, T ) x ; (ii) . (i) U x ∈ U , 4.5.2 (4.5.2), α ∈ A st(x, Uα ) ⊂ U , st(x, Uα ) x . V = {x : ∃ β ∈ A st(x , Uβ ) ⊂ st(x, Uα )}. (4.5.3) 4.5 · 115 · , x ∈ V ⊂ st(x, Uα ), V V . (4.5.2) x , γ ∈ A st(x , Uγ ) ⊂ V. (4.5.4) V x , (4.5.3), β ∈ A st(x , Uβ ) ⊂ st(x, Uα ). (U3), ∗ γ ∈ A Uγ < Uβ . x ∈ st(x , Uγ ), Uγ ∈ Uγ , x , x ∈ Uγ . ∗ Uγ < Uβ x ∈ Uγ , st(x , Uγ ) ⊂ st(Uγ , Uγ ) ⊂ Uβ ∈ Uβ . x ∈ Uγ ⊂ Uβ , st(x , Uγ ) ⊂ st(x , Uβ ). st(x , Uγ ) ⊂ st(x, Uα ). (4.5.3), x ∈ V , x , st(x , Uγ ) ⊂ V , (4.5.4) . (ii) Uα (α ∈ A), Uα◦ = {U ◦ : U ∈ Uα }. {Uα◦ : α ∈ A} {Uα : α ∈ A} . ∗ Uα◦ ∈ {Uα : α ∈ A}. (U3), β ∈ A Uβ < Uα , Uβ < Uα◦ , (U1) . Uβ < Uα , V ∈ Uβ , U ∈ Uα st(V, Uβ ) ⊂ U , x ∈ V , st(x, Uβ ) ⊂ U . (i), st(x, Uβ ) x ( x ), ◦ ◦ ◦ x U , x ∈ U . V ⊂ U , Uβ < Uα . . ∗ 4.5.4 (X, T ) T X {Uα : α ∈ A} , . 4.5.3 (i), {st(x, Uα ) : α ∈ A} x ∈ X , (U4) x, y ∈ X, x = y, α ∈ A y ∈ / st(x, Uα ). (X, T ) T1 / F. 4.5.3 (ii), . x ∈ X, F X , x ∈ {Uα : α ∈ A} : U0 , U1 , U2 , · · ·, ∗ st(x, U0 ) ⊂ X − F, Un < Un−1 (n ∈ N). U (k/2n ) (k = 1, 2, · · · , 2n − 1; n ∈ N) U (1/2) = st(x, U1 ), U (1/22 ) = st(x, U2 ), U (3/22 ) = st(U (1/2), U2 ), ······ , U (k/2n )(k = 1, 2, · · · , 2n − 1) , U (k /2n+1 ) ⎧ n ⎪ k = 2k, ⎪ ⎨ U (k/2 ), U (k /2n+1 ) = k = 1, st(x, Un+1 ), ⎪ ⎪ ⎩ st(U (k/2n ), U n+1 ), k = 2k + 1, k > 0. · 116 · 4 ∗ Un+1 < Un , U ⊂ X, st(st(U, Un+1 ), Un+1 ) ⊂ st(U, Un ), Un , st(U, Un+1 ) ⊂ st(st(U, Un+1 ), Un+1 ). x ∈ U (k/2n ) ⊂ U (k/2n ) ⊂ U ((k + 1)/2n ) ⊂ U ((k + 1)/2n ) ⊂ X − F. , U (1) = X, f (x) = inf{r : x ∈ U (r)}. Urysohn ( 2.4.1) , f X [0, 1] f (x) = 0, f (F ) ⊂ {1}, X . . 4.5.5 (X, T ) , X T . x ∈ X x U , f : X → f (x) = 0, f (X − U ) ⊂ {1}, n ∈ N, [0, 1] U (n, x, U ) = {f −1 (Sn (r)) : r ∈ [0, 1]}, Sn (r) = [0, 1] ∩ (r − 1/3n , r + 1/3n ). 4.5.1 f , U (n, x, U ) X ∗ U (n + 1, x, U ) < U (n, x, U ) (n ∈ N). (4.5.5) st(x, U (1, x, U )) ⊂ U. (4.5.6) , U (1, x, U ) = {f −1 (S1 (r)) : r ∈ [0, 1]}, S1 (r) = [0, 1] ∩ (r − 1/3, r + 1/3). r ∈ [0, 1/3) ⇔ 0 ∈ (r − 1/3, r + 1/3) ⇔ x ∈ f −1 (S1 (r)), st(x, U (1, x, U )) = ∪{f −1 (S1 (r)) : r ∈ [0, 1/3)}. f [0, 1), U . (4.5.6) . Φ = {U (n, x, U ) : x ∈ X, U x , n ∈ N}, Ψ = {U1 ∧ · · · ∧ Uk : Ui ∈ Φ, i = 1, 2, · · · , k; k ∈ N}. (4.5.5) Ψ (U2), (U3) . X T1 , (4.5.6), (4.5.5) Ψ (U4), Ψ X . (4.5.2) ( 4.5.2) (4.5.6) Ψ ∗ ∗ , Vi < Ui (i = 1, 2, · · · , k), V1 ∧ · · · ∧ Vk < U1 ∧ · · · ∧ Uk . 4.5 · 117 · T . , Ψ T , U ∈ T , x ∈ U , (4.5.6) (4.5.2) U ∈ T ; , U ∈ T , x ∈ U , (4.5.2) U ∈ Ψ T , U ∈ T . . st(x , U ) ∈ T , , . 4.5.3 (X, T ) (uniformizable), X , T . 4.5.4 4.5.6 4.5.5 , . (X, T ) . X, X × X ∆ = {(x, x) : x ∈ X} X × X (diagonal); X × X D ∆ “ x, y ∈ X, (x, y) ∈ D ⇒ (y, x) ∈ D” ∆ (symmetric entourage). D ∆ , D ◦ D = {(x, y) : z ∈ X, (x, z), (z, y) ∈ D}. 4.5.7 {Uα : α ∈ A} X (), Uα (α ∈ A), Dα = ∪{U × U : U ∈ Uα }, D = {Dα : α ∈ A}, Dα ∆ D (i) Dα , Dβ ∈ D, Dγ ∈ D Dγ ⊂ Dα ∩ Dβ ; (ii) Dα ∈ D, Dβ ∈ D (iii) α∈A Dα = ∆. Dβ ◦ Dβ ⊂ Dα ; Dα ∆ . D Uβ < Uα ⇒ Dβ ⊂ Dα ; (4.5.7) ∗ Uβ < Uα ⇒ Dβ ◦ Dβ ⊂ Dα . (4.5.7) . (4.5.8) (4.5.8) , (x, y) ∈ Dβ ◦ Dβ , z ∈ X, (x, z), (z, y) ∈ Dβ , Uβ ∈ Uβ , Uβ ∈ Uβ , (x, z) ∈ Uβ × Uβ , x, z ∈ Uβ . z, y ∈ Uβ , Uβ ∩ Uβ = ∅. ∗ Uβ < Uα , Uβ ∪ Uβ ⊂ Uα ∈ Uα . x, y ∈ Uα , (x, y) ∈ Uα × Uα ⊂ Dα . (4.5.8) . Dα , Dβ ∈ D, (U2), α, β ∈ A, γ ∈ A, Uγ < Uα , Uγ < Uβ . (4.5.7), Dγ ⊂ Dα , Dγ ⊂ Dβ , Dγ ⊂ Dα ∩ Dβ . D (i). (U3) (4.5.8) D (ii). D (iii). , x = y (x, y) ∈ α∈A Dα , (x, y) Dα , Uα (α ∈ A) Uα x, y ∈ Uα , (U4) . . · 118 · 4 4.5.8 ( ) D0 , D1 , · · · , Di , · · · X × X ∆ D0 = X × X, Di+1 ◦ Di+1 ◦ Di+1 ⊂ Di (i ∈ N), (4.5.9) X ρ Di ⊂ {(x, y) : ρ(x, y) 1/2i } ⊂ Di−1 (i ∈ N). f : X × X → [0, 1] ⎧ ∞ ⎪ ⎨ 0, (x, y) ∈ Di , f (x, y) = i=0 ⎪ ⎩ 1/2i , (x, y) ∈ Di − Di+1 (i = 0, 1, · · ·), f (x, x) = 0, f (x, y) = f (y, x). ρ(x, y) ki=1 f (xi−1 , xi ) (4.5.10) x, y ∈ X, , x0 , x1 , · · ·, xk X x0 = x, xk = y. (4.5.10), ρ(x, x) = 0 ρ(x, y) = ρ(y, x), ρ . ρ X (, {Di }∞ ∞ i=0 i=0 Di = ∆, f (x, y) , ρ X ). , 1 f (x, y) ρ(x, y) f (x, y). (4.5.11) 2 (4.5.11) ( “”) ρ “ ” . (4.5.11) ( “”) (4.5.12) k 1 f (x, y) f (xi−1 , xi ) 2 i=1 (4.5.12) X x0 , x1 , · · · , xk ( x0 = x, xk = y) . , (4.5.11) (4.5.12) ρ ( “” ) . (4.5.12) . , k = 1, (4.5.12) . k < m , (4.5.12) , k=m m . x0 , x1 , · · · , xm , x0 = x, xm = y, a = i=1 f (xi−1 , xi ), a 1/2, f (x, y) 1, (4.5.12) k = m . a < 1/2. (i) a > 0. , f (x0 , x1 ) a/2, f (xm−1 , xm ) a/2. x, y , f (x0 , x1 ) a/2, j j i=1 f (xi−1 , xi ) a , 2 4.5 · 119 · j+1 f (xi−1 , xi ) > i=1 m a , 2 f (xi−1 , xi ) i=j+2 a . 2 , (4.5.12) k < m , j 1 a f (x0 , xj ) f (xi−1 , xi ) , f (x0 , xj ) a, 2 2 i=1 m 1 a f (xj+1 , xm ) f (xi−1 , xi ) , f (xj+1 , xm ) a. 2 2 i=j+2 , a = m 1/2l a i=1 f (xi−1 , xi ), f (xj , xj+1 ) a. l , a < 1/2, l 2. f , f (x0 , xj ) 1/2i , l f (x0 , xj ) 1/2l , f (xj , xj+1 ) 1/2l , f (xj+1 , xm ) 1/2l . (x0 , xj ) ∈ Dl , (xj , xj+1 ) ∈ Dl , (xj+1 , xm ) ∈ Dl , f (x, y) 1/2i ⇔ (x, y) ∈ Di ). (4.5.9), (x0 , xm ) = (x, y) ∈ Dl−1 , f (x, y) 1/2l−1 2a, f (x, y)/2 a. (4.5.12) a > 0 k=m . (ii) a = 0. i = 1, 2, · · · , m, f (xi−1 , xi ) = 0. f , (xi−1 , xi ) ∈ Dj (j = 0, 1, 2, · · ·). (x, y) ∈ Dj ◦ Dj ◦ · · · ◦ Dj (m Dj ) j = 0, 1, 2, · · · ∞ . (4.5.9), (x, y) ∈ i=0 Di . f (x, y) = 0. (4.5.12) a = 0 k = m . (4.5.12) . (4.5.11) . , E = {(x, y) : ρ(x, y) 1/2i }. (x, y) ∈ E, ρ(x, y) 1/2i , (4.5.11) , f (x, y)/2 1/2i , f (x, y) 1/2i−1 , (x, y) ∈ Di−1 , E ⊂ Di−1 . , (x, y) ∈ Di , f (x, y) 1/2i, (4.5.11) , ρ(x, y) f (x, y) 1/2i , (x, y) ∈ E, Di ⊂ E. . 4.5.4 X (metrizable), X ρ Un = {S1/n (x) : x ∈ X} {Un : n ∈ N} . 4.5.9 ( ) . ( · 120 · 4 ( 4.5.1). . {Uα }α∈A X , {Ui : i ∈ N} . ∗ Dα = ∪{U × U : U ∈ Uα }, Uβ < Uα ⇒ Dβ ◦ Dβ ⊂ Dα ( 4.5.7 ∗ (4.5.8) ), {Uα : α ∈ A} Uαi (i ∈ N), Uαi+1 < Uαi Di = ∪{U × U : U ∈ Uαi }, Di+1 ◦ Di+1 ◦ Di+1 ⊂ Di Uαi < Ui . 4.5.8, X ρ ( {Ui : i ∈ N} , 4.5.7 (iii) Uαi < Ui i∈N Di = ∆), 1 (4.5.13) (x, y) : ρ(x, y) i+1 ⊂ Di (i ∈ N). 2 {S1/2i+2 (x) : x ∈ X} < Ui (i ∈ N). (4.5.14) y ∈ S1/2i+2 (x), ρ(x, y) < 1/2i+2 , (4.5.13), (x, y) ∈ Di+1 . x, y ∈ ∗ U ∈ Uαi+1 . S1/2i+2 (x) ⊂ st(x, Uαi+1 ). Uαi+1 < Uαi , st(x, Uαi+1 ) ⊂ U ∈ Uαi , {st(x, Uαi+1 ) : x ∈ X} < Uαi < Ui . (4.5.14) . , {{S1/n (x) : x ∈ X}}n∈N {Uα : α ∈ A} . 4.5.4 . . 4.4.9, Alexandroff-Urysohn . [8] 4.5.10 (Alexandroff-Urysohn ) X , X T0 {Un }n∈N ∗ (i) Un+1 < Un (n ∈ N); (ii) {st(x, Un )}n∈N x ∈ X . . . (X, T ) , (i), {Un }n∈N (U2), (U3). X T0 (ii), {Un }n∈N (U4), 4.5.1). 4.5.2 (4.5.2) , {Un }n∈N X ( X T , (X, T ) ( 4.5.3). 4.5.9 . . , . 4.5.11 . (X, T ) {Uα : α ∈ A} T , X ⊂ X. Uα = {U ∩ X : U ∈ Uα }, {Uα : α ∈ A} X , X . . 4.5.12 . γ ∈ Γ , (Xγ , Tγ ) , {Uαγ : α ∈ Aγ } Tγ . Φ = {Uαγ11 × · · · × Uαγkk × {Xγ : γ = γi , i = 1, 2, · · · , k} : αi ∈ Aγi , γi ∈ Γ , i = 1, 2, · · · , k; k ∈ N}, 4.5 · 121 · Uαγ11 × · · · × Uαγkk = {Uαγ11 × · · · × Uαγkk : Uαγii ∈ Uαγii , i = 1, 2, · · · , k}. Φ γ∈Γ Xγ . . [398] 4.5.5 U (normal covering), ∗ {Un }n∈N Un+1 < Un (n ∈ N) U1 < U . (X, T ) , Φ = {Uα : α ∈ A} X T . (U3) 4.5.3 (ii), Uα (α ∈ A) . Φ (X, T ) . , Φ (U1), (U3). Φ ⊃ Φ(Φ (U4)), Φ (U4). 4.5.5 , Φ ( ) , Φ , Φ (U2), Φ X . (X, T ) , , 4.5.5 Φ T . Φ ⊂ Φ , Φ T . . 4.5.13 , . : “ Φ = {Uα : α ∈ A} (X, T ) T Ψ .” , : , X “ U , α ∈ A Uα < U ”. , (U1), Ψ ⊂ Φ, , 4.5.3 (ii), Ψ Φ . . , α ∈ A, Uα Uα U . xα ∈ Uα , st(xα , Uα ) U . α, β ∈ A, α > β Uα < Uβ , A . ϕ(α) = xα (α ∈ A), ϕ(A; >) , ϕ(α) = xα (α ∈ A) (X, T ) , x ( 3.8). U , x ∈ U ∈ U . . Φ = {Uα : α ∈ A} T , α0 ∈ A st(x, Uα0 ) ∈ U ∈ U ( 4.5.3 ∗ (i)). α∈A Uα < Uα0 , st(st(x, Uα ), Uα ) ⊂ st(x, Uα0 ). x ϕ(A; >) , st(x, Uα ) x , 1.4.7, β > α xβ = ϕ(β) ∈ st(x, Uα ). Uβ < Uα (β > α), st(xβ , Uβ ) ⊂ st(xβ , Uα ) ⊂ st(st(x, Uα ), Uα ) ⊂ st(x, Uα0 ) ⊂ U. xβ . . 4.5.6 X Y f (uniformly continuous), Y ( ) V , f −1 (V ) 4.5.5 Ψ , Ψ ⊂ Φ . Φ T , , st(x , U ) T , st(x , U ) x T , . U , U1 < U , · 122 · 4 X ( ). . X Y f , f −1 , f (uniform isomorphism). X, Y (uniformly isomorphic). 4.5.14 X Y . X, Y {Uα : α ∈ A}, {Vβ : β ∈ B}. V Y , U = f −1 (V ) X . x ∈ U, f (x) ∈ V , 4.5.2 −1 (4.5.2) , β ∈ B, st(f (x), Vβ ) ⊂ V . , f (Vβ ) ∈ {Uα : α ∈ A}. st(y, V ) ⊂ V ⇔ st(f −1 (y), f −1 (V )) ⊂ f −1 (V ), st(x, f −1 (Vβ )) ⊂ st(f −1 (f (x)), f −1 (Vβ )) ⊂ f −1 (V ) = U . (4.5.2) , U X . . 4.5.15 f X Y , X , f . V Y , V ( 4.5.5), ∗ Vn+1 < Vn (n ∈ N) V1 < V , f −1 (V ) Y {Vn }n∈N ∗ X , f −1 (Vn ) (n ∈ N) X f −1 (Vn+1 ) < f −1 (Vn ) (n ∈ N) f −1 (V1 ) < f −1 (V ). f −1 (V ) . , f −1 (V ) X . f . . 4.5.1 X Y . 4.5.15 X , 4.5.13 X , . . Tukey . 4.5.7 Weil , . 4.5.16 D = {Dα : α ∈ A} X × X ∆ D 4.5.7 (i)∼(iii). U (Dα ) = {Dα [x] : x ∈ X}, , Dα [x] = {y : y ∈ X, (x, y) ∈ Dα }. Φ = {U (Dα ) : α ∈ A} (U2)∼(U4), Φ X . α, β ∈ A, Dα , Dβ ∈ D, (i) γ ∈ A Dγ ⊂ Dα ∩ Dβ , x ∈ X, Dγ [x] ⊂ (Dα ∩ Dβ )[x] = Dα [x] ∩ Dβ [x], U (Dγ ) < U (Dα ) U (Dγ ) < U (Dβ ). Φ (U2). α ∈ A, (ii) β ∈ A Dβ ◦ Dβ ◦ Dβ ◦ Dβ ⊂ Dα . U (Dβ ) = {Dβ [x] : x ∈ X} Dβ [x]. Dβ [x] ∩ Dβ [y] = ∅, z ∈ Dβ [x] ∩ Dβ [y], (x, z ) ∈ Dβ , (z , y) ∈ Dβ , (x, y) ∈ Dβ ◦ Dβ . z ∈ Dβ [y], (y, z) ∈ Dβ , 4.5 · 123 · (x, z) ∈ (Dβ ◦ Dβ ) ◦ Dβ ⊂ Dβ ◦ Dβ ◦ Dβ ◦ Dβ ⊂ Dα , ∗ z ∈ Dα [x], Dβ [y] ⊂ Dα [x]. U (Dβ ) < U (Dα ), Φ (U3). x, y ∈ X, x = y, (iii), (x, y) ∈ / α∈A Dα . α ∈ A (x, y) ∈ / Dα . (ii) β∈A Dβ ◦ Dβ ⊂ Dα , (x, y) ∈ / Dβ ◦ Dβ . z ∈ X, x ∈ Dβ [z], y ∈ Dβ [z] . U (Dβ ) x y, Φ (U4). Φ X . . Weil “ D X × X ∆ D , : (i) ∆ D, Dα ∈ D Dα ⊂ D, D ∈ D; (ii) Dα , Dβ ∈ D, Dα ∩ Dβ ∈ D; (iii) Dα ∈ D, Dβ ∈ D Dβ ◦ Dβ ⊂ Dα ; (iv) ∩D = ∆, D X . X D , (X, D). D D D (), D ∈ D, D ∈ D D ⊂ D.” X × X ∆ D D X D Weil (iii), (iv) (ii ) Dα , Dβ ∈ D , Dγ ∈ D Dγ ⊂ Dα ∩ Dβ . , (ii ), (iii), (iv) 4.5.7 (i), (ii), (iii). , 4.5.7 “ {Uα : α ∈ A} Tukey ( 4.5.1), Dα = ∪{U × U : U ∈ Uα }, D = {Dα : α ∈ A} Weil .” , 4.5.16 “ D = {Dα : α ∈ A} Weil , Dα [x] = {y : y ∈ X, (x, y) ∈ Dα }, U (Dα ) = {Dα [x] : x ∈ X}, {U (Dα ) : α ∈ A} Tukey .” . Weil , ( 4.5.6 ) “ X Y f (uniformly continuous), Y ( ∆ ) D, φ−1 (D) X ( ∆ ), φ(x, y) = (f (x), f (y)).” (X, ρ), Weil {{(x, y) : ρ(x, y) < 1/n}}n∈N · 124 · 4 . (X , ρ ) f , ε > 0, δ > 0, ρ(x, y) < δ , ρ (f (x), f (y)) < ε.” “ (X, ρ) 4.1 4 [a, b] C. f, g ∈ C, ρ(f, g) = max{|f (x) − g(x)| : x ∈ [a, b]}. ρ C . (continuous function space), C[a, b], C. 4.2 [a, b] L2 . f, g ∈ L2 , ρ(f, g) = b (f (x) − g(x))2 dx. a ρ L2 . (Lebesgue integrable function space), L2 [a, b], L2 . 4.3 A (X, ρ) , d(A) A . (i) d(A) = d(A); (ii) A , x, y ∈ A, 4.4 (X, ρ) {xn } x ∈ A A 4.5 (X, ρ) δ ∈ ∆} d(A) = ρ(x, y). x ∈ X, {ρ(x, xn )} . x. {ϕ(δ) : δ ∈ ∆} x {ρ(ϕ(δ), x) : . 4.6 (X, ρ), (Y, σ) . , X Y f x ∈ X, ε > 0, δ > 0, ρ(x, x ) < δ ⇒ σ(f (x), f (x )) < ε. 4.7 X ρ1 , ρ2 (equivalent), ρ1 , ρ2 X . X ρ1 , ρ2 , x ∈ X, {xn }, lim ρ1 (x, xn ) = n→∞ 0 ⇔ lim ρ2 (x, xn ) = 0. n→∞ 4.8 (X, ρ), ρ1 (x, y) = ρ(x, y) 1 + ρ(x, y) X , ρ1 ρ . 4.9 f : (i) f x = 0; (iii) f (x + y) f (x) + f (y). (X, ρ) , (X, ρ ) ρ, ρ . ; (ii) f (x) = 0 ρ (x, y) = f (ρ(x, y)). 4 4.10 A X X − A X. 4.11 (X, ρ) · 125 · ε > 0, ε . 4.12 4.13 , . (i) X ; (ii) x ∈ X, x {Un (x)}n∈N xn ∈ Un (x) ⇒ {xn } → x; (iii) x ∈ X, x {Un (x)}n∈N xn ∈ Un (x) ⇒ {xn } x . 4.14 σ ( Gδ ). 4.15 (X1 , ρ1 ), (X2 , ρ2 ), · · · , (Xk , ρk ) . X1 × · · · × Xk x = (x1 , x2 , · · · , xk ), y = (y1 , y2 , · · · , yk ), ρ(x, y) = ρ1 (x1 , y1 ) + ρ2 (x2 , y2 ) + · · · + ρk (xk , yk ). ρ . 4.16 T2 . 4.17 (Moore {Un }, [15, 300, 378] ) T0 X X x ∈ X, {st(st(x, Un ), Un ) : n ∈ N} 4.18 T2 x . ( T2 ). 4.19 ( ). 4.20 X : Y (i) y ∈ Y , x ∈ f f −1 , (y), x U = {U }, f (U ) (U ∈ U ) Y ; (ii) U X 4.21 , {Intf (U ) : U ∈ U } Y X totally (totally normal Fσ {Gα } , {Gα } G U (x) {Gα } (i) ). [111] . ), X G ( x ∈ G, x totally ; (ii) T2 ( ) totally [111] ; (iii) totally totally ( totally ). 4.22 X Y f (quasi-open), X U f (U ) ( Intf (U ) = ∅). f , −1 : f :X→Y (E) X . 4.23 . , E Y , · 126 · 4.24 4 X ρ1 , ρ2 (uniformly equivalent), x, x ∈ X ε > 0, δ1 > 0 δ2 > 0 ρ1 (x, x ) < δ1 ⇒ ρ2 (x, x ) < ε ρ2 (x, x ) < δ2 ⇒ ρ1 (x, x ) < ε. , . , , . 4.25 4.1.9 ρ ρ, 4.8 ρ1 ρ. 4.26 ρi , σi Xi (i = 1, 2, · · ·) 1( x, x ∈ Xi , ρi (x, x ) 1, σi (x, x ) 1). ρ(x, y) = ρ, σ 4.27 ∞ i=1 Xi . (Y, σ) . (X, ρ) , , ρ X σ, , X (totally bounded uniform space), {Uα : α ∈ A} Uα . X (Cauchy filter), Uα F ∈ F U ∈ Uα U . X (complete uniform space), X X E (ii) X X E (iv) 4.30(Birkhoff-Kakutani ) . : ; X [47, 226] X; (iii) X F F ⊂ U . X ϕ(∆; >) (Cauchy net), Uα U ∈ Uα (i) . (X, ρ) (X, σ) 4.29 ∞ 1 ρ (x , y ), σ(x, y) = σ (xi , yi ). i i i i i i 2 2 i=1 i=1 f (X, ρ) (Y, σ) 4.28 ∞ 1 ; . . 4.31(Weil . [409] ) X X Weil 5 3.5 ( 3.5.5), . 3.5 ( 3.5.7∼ 3.5.10). 4.3 Bing-Nagata-Smirnov ( 4.3.6 4.3.7) 4.4 MoritaHanai-Stone ( 4.4.2) , . , (covering property). . 6 . 5.1 5.1.1 [278] X , (i) X ; (ii) X σ ; (iii) X ; (iv) X . 4.4.1 . 5.1.1 σ . U = n∈N Un σ , Un (n ∈ N) . V1 = U1 , Vn = {U − kα , {Cα,1 }α∈A {Uα }α∈A . i = 1, 2, · · · , n {Uα }α∈A {Cα,i }α∈A (5.1.9) (5.1.10). · 132 · {Cα,n+1 }α∈A . 5 α ∈ A, Uα,n+1 = Uα − Cβ,n − , (5.1.11) β<α {Uα,n+1 }α∈A X , x ∈ X, U x Uα , − {Cα,n }α∈A {Uα }α∈A , ( β<α Cβ,n ) ⊂ β<α Uβ , x ∈ Uα,n+1 . , {Uα,n+1 }α∈A {Cα,n+1 }α∈A , (5.1.11) − ( β<α Cβ,n ) ∩ Cα,n+1 = ∅ ( Cα,n+1 ⊂ Uα,n+1 ). (5.1.9), (5.1.10), (5.1.11) Cα,n β > α Uβ,n+1 , ( β>α Cβ,n+1 )− ⊂ β>α Uβ,n+1 , Cα,n ∩ ( β>α Cβ,n+1 )− = ∅, (5.1.10). α i, − Vα,i = X − Cβ,i , β=α Vα,i α = β, Vα,i ∩ Vβ,i = ∅. {Cα,i }α∈A U , Vα,i ⊂ Cα,i ⊂ Uα . {Vα,i : α ∈ A, i ∈ N} X , , {Vα,i : α ∈ A, i ∈ N} U σ . x ∈ X, {Cα,i }α∈A (i ∈ N) X , αi = min{α ∈ A : x ∈ Cα,i }, k αk = min{αi : i ∈ N}. x ∈ Vαk ,k+1 . αk x ∈ Cαk ,k . (5.1.10) ( − Cβ,k+1 . x∈ / i = k), (5.1.12) β>αk {Cα,k+2 }α∈A , αk , α αk x ∈ Cα,k+2 . (5.1.9) ( i = k+1), x ∈ / ( β<α Cβ,k+1 )− . ( β<αk Cβ,k+1 )− ⊂ ( β<α Cβ,k+1 )− , − x∈ / Cβ,k+1 . (5.1.13) β<αk (5.1.12) (5.1.13), x ∈ Vαk ,k+1 . {Vα,i : α ∈ A, i ∈ N} U = {Uα }α∈A σ . , , {Vα,i : α ∈ A, i ∈ N} {Dα,i : α ∈ A, i ∈ N}. i ∈ N, − Dα,i ⊂ Vα,i , α∈A α∈A 5.1 X · 133 · , Gi − Dα,i ⊂ Gi ⊂ Gi ⊂ Vα,i . α∈A α∈A Wi = {Vα,i ∩ Gi : α ∈ A}, Wi (, 2.30). W = i∈N Wi U σ . . 5.1.4 (i) ⇒ (ii) ⇒ (iii) ⇒ (v) ⇒ (i) (ii) ⇒ (iv) ⇒ (v). (i) ⇒ (ii). 5.1.1 (ii) . (ii) ⇒ (iii). X σ V = i∈N Vi , Vi . X , {V : V ∈ V } U . , {V : V ∈ Vi } . i ∈ N, Hi = ∪Vi , Hi , Wi = V − Hn : V ∈ V i , W = Wi . n m), W ∩Hm = ∅. x ∈ (∪(W ∩( im Wi )))− . im Wi , W ∈ W ∩( im Wi ) ⊂ W , x ∈ W = W . W U . (iii) ⇒ (v). U . (v) ⇒ (i). 5.1.6 . (ii) ⇒ (iv). , (iv) ⇒ (v) (ii) ⇒ (iii) (). . T2 , T4 . . [46] 5.1.4 T1 X (collectionwise normal space), X {Fα }α∈A , {Uα }α∈A , α ∈ A, Fα ⊂ Uα . , . 2.30 “ ” “”. 5.1.6 T4 , . 5.1.5 T1 X , X . {Fα }α∈A X . α = β, Fα = Fβ . α ∈ A, Uα = X − β=α Fβ , Fα ⊂ Uα , α = β, Fα ∩Uβ = ∅. {Uα }α∈A X · 134 · 5 , , {Cα }α∈A . Vα = X − ( β=α Cβ )− , {Vα }α∈A . ( β=α Cβ )− ⊂ β=α Uβ , ( β=α Uβ )∩Fα = ∅, Fα ⊂ Vα , α ∈ A. , α, α ∈ A, ( β=α Cβ ) ∪ ( β=α Cβ ) = X, Vα ∩ Vα = ∅. X . . 5.1.2 [46] T2 . 3.5.8 5.1.4 (v) . . ( 5.9). 5.1.3 ( 5.1.1) . 5.1.5 [278] X I = [0, 1] Φ = {ϕs }s∈S X (partition of unity), x ∈ X, s∈S ϕs (x) = 1, s∈S ϕs (x) = 1 s ∈ S ϕs (x) = 0, 1. , {ϕ−1 s ((0, 1])}s∈S X . U , {ϕ−1 s ((0, 1])}s∈S U . 5.1.6 ( [278] ) X T2 , (i) X ; (ii) X U U ; (iii) X U U . . 5.1.7 U . . X U U = {Uα }α∈A X . , {Fα }α∈A α ∈ A, Fα ⊂ Uα ( 4.4.2). Urysohn ( 2.4.1), α ∈ A, fα : X → [0, 1] fα (x) = 0, x ∈ X − Uα ; fα (x) = 1, x ∈ Fα . f (x) = α∈A fα (x), U fα f X R . {Fα }α∈A X , f X . ϕα = fα /f , Φ = {ϕα }α∈A X . {ϕ−1 α ((0, 1])}α∈A U , Φ U . . 5.1.8 X U X Φ U , U σ . Φ = {ϕα }α∈A X X U , {ϕ−1 α ∈ A, ϕ−1 α ((0, 1])}α∈A X U . α ((0, 1]) 5.1 · 135 · −1 ϕ−1 α ((0, 1]) = ∪{ϕα ((1/i, 1]) : i 2} (α ∈ A). Vα,i = ϕ−1 α ((1/i, 1]), V = {Vα,i : i 2, α ∈ A}, V U . i 2, {Vα,i }α∈A , V σ . x0 ∈ X, i 2 . x0 U (x0 ) U (x0 ) . Φ = {ϕα }α∈A , α∈A ϕα (x0 ) = 1, {Vα,i }α∈A A A , x0 α∈A ϕα (x0 ) > 1 − 1/i. U (x0 ), x ∈ U (x0 ), α∈A ϕα (x) > 1 − 1/i. U (x0 ) Vα,i (α ∈ A ) . , U (x0 ) ∩ Vβ,i = ∅, β ∈ / A , x ∈ U (x0 ) ∩ Vβ,i , α∈A ϕα (x ) + ϕβ (x ) > 1. . . 5.1.6 (i) ⇒ (ii). (ii) ⇒ (iii) T2 , (iii) ⇒ (i) ⇒ (ii). ( 3.5.8), 5.1.7 . (iii) ⇒ (i). 5.1.8 X U σ . (iii) X , 5.1.1 T1 . . , (iii) x0 ∈ X F ⊂ X x0 ∈ / F , U = {X − F, X − {x0 }} Φ = {ϕα }α∈A U . α0 ∈ A, ϕα0 (x0 ) = a > 0, −1 ϕα0 ((0, 1]) ⊂ X − F ϕα0 (x) = 0, x ∈ F . f (x) = 1 − min{1, ϕα0 (x)/a}, f (x0 ) = 0; f (x) = 1, x ∈ F . X . . ( 5.1.1 5.1.2 5.1.4 5.1.6) T2 . . , Mack[271] Junnila[219, 220] . . [219], [220], [271]. 5.1.6 X U (), (). U (interiorpreserving), U ⊂ U , ∩U . 5.1.7 [271] (i) X ; (ii) X ; (iii) X ; (iv) X . · 136 · 5 (iv) 5.1.1 (iv), . 5.1.8 [219, 220] (i) X ; (ii) X σ , () X; (iii) X , () X; (iv) X V x ∈ X, x ∈ Int(st(x, V )). 5.2 5.2∼5.6 5 . 5.2.1 (Michael [281] ) 5.8 5.1.4 (iii) Michael T2 . . . T2 , . 5.1.4 (iii). 5.2.1 “ T2 ”, . 5.1 ? , . , , Mack Junnila . Mack[271] [ 5.1.7 (iv)] ” [ , , 5.1.1 (iv) “ [414] ]. Worrell “ ” ( 6.2.2) , “ ” “T1 ”. [136] “ ()? ” Worrell , “” “”, 5.2.2 . 5.2.1 X Y f [285] (bi-quotient), y ∈ Y X U , ∪U ⊃ f −1 (y), U U ⊂ U y ∈ Intf (∪U ) ( U X , f [359] (countably bi-quotient)); f [19] (pseudo-open), y ∈ Y X U , U ⊃ f −1 (y), y ∈ Intf (U ); f [306] (quasi-perfect), 5.2 f , y ∈ Y , f −1 (y) ( , 3.3.1). · 137 · f −1 (y) , . 5.2.2 f : X → Y X Y ,Y . V Y , f −1 (V ) = {f −1 (V ) : V ∈ V } X . 5.1.8 (iii), U f −1 (V ) {IntU : U ∈ U } X. f −1 (V ) , U f , f (U ) = {f (U ) : U ∈ U } Y ( . 5.8), V . {IntU : U ∈ U } X . f , y ∈ Y , U U ⊂ U y ∈ Intf (∪{IntU : U ∈ U }) ⊂ Intf (∪U ). , U ∈ U U = ∪U , y ∈ Intf (U ). Y V f (U ) = {f (U ) : U ∈ U } Y . 5.1.8 (iii), Y . . , . 5.2.1 [136] . [414] 5.2.2 . [271] 5.2.3 . Worrell “ T1 ”, 5.2.3 , 4.4.8 , 5.2.3 . [136] ()? [244] . , T1 ( 6.2.1), . , . , 5.2.2 , , . (). U · 138 · 5 , . . X, Y , f : X → Y Lindelöf (Lindelöf mapping), y ∈ Y , f −1 (y) X Lindelöf . 5.2.3 [132] X . f X Y Lindelöf , U = {Uα }α∈A X , y ∈ Y , f −1 (y) Lindelöf . f −1 (y) U . f −1 (y) ⊂ i∈N Uy,i = Uy . 1.5.1, Vy f −1 (y) ⊂ Vy ⊂ Uy Vy = f −1 (f (Vy )) f (Vy ) Y . Wy = f (Vy ), {Wy }y∈Y Y . Y , {Wy }y∈Y {Wy }y∈Y Oβ Wy(β) , {Oβ }β∈B . −1 −1 f (Oβ ) ⊂ f (Wy(β) ) = Vy(β) ⊂ Uy(β) . {f −1 (Oβ )}β∈B . Vi = {f −1 (Oβ ) ∩ Uy(β),i }β∈B . V = i∈N Vi U σ . X , 5.1.1 . . 5.2.4 [176] . f X Lindelöf . . 5.2.5 Y , X 5.2.3 5.2.4 , X 5.2.3 X X . . . 5.3 2.2 , T0 , T1 , T2 , T3 () , ( 2.2.4). P , P () P, P P (closed hereditary property) ( (open hereditary property)). ( 2.11) ⇒ ( 2.2.7 ). ( 3.5.7), , ? 2.2.4, [0, ω1 ], [0, ω] [0, ω1 ] × [0, ω] T2 , . T2 , ( 3.5.8). , ⇒ . 5.3.1 [106] X , X ( X ). 5.3 · 139 · M ⊂ X X , V = {Vα }α∈A M M . X U = {Uα }α∈A Vα = Uα ∩ M , α ∈ A. G = ∪U , G ⊃ M . U G, , U G W , {W ∩ M : W ∈ W } M , V . M . . 5.3.1 [278] T2 Fσ ( T2 Fσ (Fσ -hereditary property)). M T2 X Fσ . M = n∈N Fn , Fn (n ∈ N) . V = {Vα }α∈A M , X U = {Uα }α∈A Vα = Uα ∩ M, α ∈ A. n ∈ N, {Uα }α∈A ∪ {X − Fn } X , Wn . Bn = {W ∩ M : W ∈ Wn , W ∩ Fn = ∅}, B= Bn . n∈N B M σ , V . T2 , M . 5.1.1 (ii) M . . 5.3.1 Bn M [157] X. , T1 Fσ . 4.1 ( Fσ , 4.1.3) , 5.3.1 5.3.1 . 5.3.1 [108] ). T2 ( . 5.3.1 [241] {Fα }α∈A (hereditarily closure-preserving), α ∈ A, Hα ⊂ Fα , {Hα }α∈A . σ (σ-hereditarily closure-preserving). , ⇒ ⇒ . 5.5.1. 5.3.2 [130, 428] (i) X X T2 , ; (ii) X G Fσ , G ; (iii) X G Fσ , G σ . (i) ⇒ (ii) (iii) ⇒ (i). · 140 · 5 (i) ⇒ (ii). G T2 X . X ( 3.5.8). x ∈ G, x U (x), U (x) ⊂ G. {U (x)}x∈G G. (i), X , G {Uα }α∈A {U (x)}x∈G . G T2 , ( 3.5.8), G {Fα }α∈A Fα ⊂ Uα , α ∈ A ( 4.4.2), G Fσ {Gα }α∈A Fα ⊂ Gα ⊂ Uα , α ∈ A ( 2.14). {Uα }α∈A G , {Gα }α∈A G . G Gα ⊂ Uα ⊂ U α ⊂ U (x) ⊂ G, Gα X Fσ , G = ∪{Gα : α ∈ A}. (iii) ⇒ (i). X G , 5.3.1 . X G G = i∈N ( αi ∈Ai Xαi ), Xαi X Fσ {Xαi }αi ∈Ai G . U G . Uαi = {U ∩ Xαi : U ∈ U } (αi ∈ Ai ; i ∈ N). Uαi Fσ Xαi . 5.3.1 , Uαi X σ , G σ Vαi = j∈N Vαi ,j , j ∈ N, Vαi ,j G , . Vα∗i ,j = ∪{V : V ∈ Vαi ,j } ⊂ Xαi , {Xαi }αi ∈Ai G , V = Vαi ,j i,j∈N αi ∈Ai G σ , U . T2 , G . 5.1.4 (ii), G , X . . Dowker[111] totally ( 4.21). 5.3.2 (ii) . . 5.3.2 [130] T2 totally . 5.3.2 “ ” “ ” ( 5.19). 5.4 1944 , Dieudonné[106] , Sorgenfrey[371] 1947 . 2 2.3.3 (Sorgenfrey ) 2.3.4 (Sorgenfrey ). 2 Lindelöf ( ) Lindelöf ( ) , . Sorgenfrey Lindelöf , ( 5.1.1), Sorgenfrey (Sorgenfrey ) , , ( 3.5.8). 5.4 · 141 · , . , [106] . Dieudonné 5.4.1 ( 5.20), . 5.4.1 [106] . X , Y . X × Y X p : X × Y → X ( 3.3.1). 5.2.4, X × Y . . X σ (σ-compact), . 5.4.2 [278] T2 σ . X T2 , Y σ . σ Lindelöf , Y ( 5.1.1), Tychonoff , Y Stone-Čech βY . 5.4.1, X × βY . T2 ( 3.1.5), Y βY Fσ , X × Y X × βY Fσ , X × Y T2 , 5.3.1 X × Y . . . ( 5.4.1), ? , 5.4.1. 5.4.1 (Michael [282] ) T2 , . [0, 1], Q, I. [0, 1] , I . X. X . X . U X . U U Q, U ∪ {{x} : x ∈ X − ∪U } σ , U . X , 5.1.2 X . I , . X × I . X × I A = Q × I, B = {(x, x) : x ∈ I}. U , A ∩ U = ∅. n ∈ N, B In = {x : x ∈ I, {x} × S1/n (x) ⊂ U }, S1/n (x) = {y : y ∈ I, ρ(x, y) < 1/n}, ρ . , I = n∈N In , I ( 1.3.2), Int(I n ) = ∅ ( [0, 1] , ), I n [0, 1] , Q ∩ I n = ∅. · 142 · 5 x ∈ Q ∩ I n y ∈ I ρ(x, y) < 1/2n. (x, y) ∈ A, V y I W , (V × W ) ∩ U = ∅. x X X , V = G ∪ K, G , K ⊂ I, x ∈ Q, , x K G, x I n , x ∈ G ∩ In ρ(x , x) < 1/2n, (x , y) ∈ V × W , ρ(x , y) ρ(x , x) + ρ(x, y) < 1/2n + 1/2n = 1/n. In (x , y) ∈ U . (V × W ) ∩ U = ∅. . 5.4.1 , . R Michael (Michael line). X Lindelöf , Lindelöf [0, 1] I [0, 1] I , I [239] p. 422, (Y. . , Bernstein , [233] Kodama) (K. Nagami) 13.5. . X Lindelöf . X , X × I . X, X , Michael[278] ( 5.22). 5.3.2 X, X totally . totally . () . 5.4.3 (Tamano [383, 384] ) X Tychonoff , (i) X ; (ii) X T2 cX, X × cX (iii) X × βX ; (iv) X cX X × cX ; (i) ⇒ (ii) 5.4.1 . . (ii) ⇒ (iii) ⇒ (iv) . (iv) ⇒ (i). {Uα }α∈A X . α ∈ A, cX Vα Uα = X ∩ Vα . Z = cX − α∈A Vα cX − X , ∆ ⊂ X × X X × Z X × cX , X × cX I = [0, 1] f : X × cX → I f (∆) ⊂ {0}, f (X × Z) ⊂ {1}. ρ(x, y) = sup {|f (x, z) − f (y, z)|}. z∈cX (5.4.1) 5.5 · 143 · ρ X . ρ T1 X T2 , T1 ⊂ T2 . x0 ∈ X, x ∈ cX ε > 0, f X × cX G × H , (x0 , x ) f (G × H) ⊂ (f (x0 , x ) − ε/3, f (x0 , x ) + ε/3), d(f (G × H)) < ε (d(D) D ⊂ I cX, cX , H , 4.1.4). G X, H cX, d(f (Gi × Hi )) < ε (i = 1, 2, · · · , k), {x0 } × cX ⊂ k i=1 (Gi × Hi ), x0 ∈ k i=1 Gi . x ∈ (5.4.2) k i=1 Gi , (5.4.1), ρ(x, x0 ) = sup {|f (x, x ) − f (x0 , x )|}. x ∈cX x ∈ cX, x ∈ Hi , (5.4.2) ρ(x, x0 ) < ε, k Gi ⊂ Sε (x0 ) = {y : y ∈ X, ρ(x0 , y) < ε}. i=1 ρ T2 , T1 ⊂ T2 . Stone 4.3.3 , X {S1/2 (x)}x∈X T1 {Wβ }β∈B , X T2 . x ∈ X, y ∈ S1/2 (x), f (x, y) = |f (x, y) − f (y, y)| ρ(x, y) < 1/2. y ∈ S1/2 (x) ( cX ), f (x, y) 1/2. β ∈ B, x ∈ X Wβ ⊂ S1/2 (x), z ∈ Z, f (x, z) = 1, W β ∩ Z = ∅, W β ⊂ α∈A Vα . W β , A(β) ⊂ A, W β ⊂ α∈A(β) Vβ , Wβ ⊂ X ∩ W β ⊂ α∈A(β) Uβ . {Wβ ∩ Uα : β ∈ B, α ∈ A(β)} X , {Uα }α∈A . X . . 5.4.1 5.4.3 . 5.4.4 X T2 T2 Y , X × Y . 5.5 , ( 3 , 3.1.3). · 144 · 5 5.5.1 {Xα }α∈A , Xα (α ∈ A) , α∈A Xα . U = {Uβ }β∈B α∈A Xα . α ∈ A, {Xα ∩ Uβ }β∈B Xα , Xα Vα {Xα ∩ Uβ }β∈B . V = α∈A Vα , V α∈A Xα , U . . 5.5.1 “ ”. “”, , . 5.5.2 [278] {Fα }α∈A X , Fα (α ∈ A) X T2 , X T2 . X = α∈A Fα , Fα T2 , {Fα }α∈A . , X T1 . X . x ∈ X F , x∈ / F, U (x) = X − ∪{Fα : x ∈ / Fα }, V (x) = ∪{Fα : x ∈ Fα } = n Fαi . i=1 {Fα }α∈A U (x) x ( 3.5.2), V (x) , U (x) ⊂ V (x). Fα ( 3.5.8), x Fαi (i n), i n, x X Ui (x) Ui (x) ∩ Fαi ∩ F = ∅. W (x) = U (x) ∩ n Ui (x) , i=1 W (x) x , W (x) ∩ F ⊂ V (x) ∩ n i=1 n Ui (x) ∩ F ⊂ (Fαi ∩ Ui (x)) ∩ F = ∅. i=1 X . U X . U () Fα Fα Uα . Fα , Fα Vα Uα . Fα , Vα X ( 5.3.1 ). V = α∈A Vα , V X, U . {Fα }α∈A , V . X , 5.1.1 X , . P [194] (locally finite closed sum theorem), X {Fα }α∈A Fα (α ∈ A) P, 5.5 · 145 · X P. (closed sum theorem) (sum theorem). 5.5.2 “T2 ”. (generality theorem for sum theorems), 5.5.2 . 5.5.3 [26] P (i) P (ii) P ; , P . {Fα }α∈A X , Fα (α ∈ A) P. α ∈ A, Fα Fα Fα , {Fα }α∈A , fα : Fα → Fα . X ∗ = α∈A Fα , X ∗ X f ( ) x ∈ X ∗ , f (x) = fα (x), x ∈ Fα . (i) X ∗ P. ( x Fα ), f . f . E ∗ X ∗ . E∗ = α∈A α ∈ A, (E ∗ ∩ Fα ), f (E ∗ ) = E ∗ ∩ Fα Fα , fα Fα fα (E ∗ ∩ Fα ). α∈A Fα , fα (E ∗ ∩ Fα ) Fα , Fα X , fα (E ∗ ∩ Fα ) X . {Fα }α∈A , {fα (E ∗ ∩ Fα )}α∈A , f (E ∗ ) . , α∈A fα (E ∗ ∩ Fα ) ( 5.1.2), f X ∗ X P . . . (ii), X P, 5.5.1 5.2.3, 5.5.3 (i) (ii), (). 5.5.4 [26] {Fα }α∈A X , Fα (α ∈ A) X , X . 5.5.3 , , fα (E ∗ ∩ Fα ) ⊂ f (E ∗ ) ∩ Fα . , α∈A fα (E ∗ ∩ Fα ) , {fα (E ∗ ∩ Fα )}α∈A . {Fα }α∈A , {fα (E ∗ ∩ Fα )}α∈A ? , {Fα }α∈A , α ∈ A, Hα ⊂ Fα , {Hα }α∈A , 5.5.1. · 146 · 5 5.5.1 ( , ) [0, 1], [0, 1/2], ···, [0, 1/n], ···. , {[0, 1/n]}n∈N . {1} ⊂ [0, 1], {1/2} ⊂ [0, 1/2], ···, {1/n} ⊂ [0, 1/n], ···, {{1/n}}n∈N . 5.5.3 {Fα }α∈A “” “ ” ( 5.3.1), {fα (E ∗ ∩ Fα )}α∈A , f . . 5.5.5 [356] P (i) P ; (ii) P , P (hereditarily closure-preserving closed sum theorem). Singal Arya[356] “ ”. , “ ”. , T2 , 5.2.1, T2 , 5.5.5 . 5.5.6 [356] {Fα }α∈A X , Fα (α ∈ A) X T2 , X T2 . 5.5.6 “T2 ”. 5.5.3 5.5.5 . , . X P (point countable), X P . “” ( (Σ )) “ ” ( (Σ )) 5.5.3 5.5.5. 5.5.5 , “” (pointcountable and hereditarily closure-preserving closed sum theorem, (Σ ∗ ))[138] . ( , 5.6). X F (regular closed set), F = IntF . F F . , “”[133] (locally finite regular closed sum theorem, (Σ ◦ )). 5.5 · 147 · X, Y , f : X → Y (countable-to-one), −1 y ∈ Y , f (y) ; , X U , Intf (U ) ( 4.22). 5.5.3 , . 5.5.7 [138] P (i) P ; (ii) P , P . 5.5.8 [133, 138] P (i) P ; (ii) P P . , 5.5.3. f : X ∗ → X , f , 5.5.3 Fα , Uα , Fα = U α . , f , Fα E (⊂ Fα ) f (E) . fα : Fα → U α , fα (E) U α , G fα (E) = G ∩ U α . x ∈ fα (E) ⊂ G, x V (x) ⊂ G. x ∈ fα (E) ⊂ U α , V (x) ∩ Uα = ∅. V (x) ∩ Uα ⊂ fα (E), Intfα (E) = ∅. E ⊂ Fα , f (E) = fα (E). f . (ii), X P, P . . 4 , ( (i) , ) (Σ ) ⇒ (Σ ∗ ) ⇒ (Σ ) ⇒ (Σ ◦ ); ⇒ ⇒ ⇒ 5.5.7 Lindelöf 5.5.8 . ; . 5.5.3 X T1 , 5.5.9. , . 5.5.1 [327] {Fα }α∈A T1 X , X K, K Fα . , Fα K. K ∩ Fα1 = ∅, x1 ∈ K ∩ Fα1 . K − Fα1 , Fα2 (K − Fα1 ) ∩ Fα2 = ∅, x2 ∈ (K − Fα1 ) ∩ Fα2 . xn ∈ (K − i 0 y x} ( y = x ). y > x, {(x, y)} . (x, x) ∈ X, Vx = {(x, y) : (x, y) ∈ X y > x} ∪ {(y, x) : (y, x) ∈ X y < x} ( (x, x) ). (5.5.1) (x, x) {{(x, x)} ∪ (Vx − F ) : F }. ∆ = {(x, x) : x > 0}. (x, y) ∈ X − ∆, F (x, y) = {(x, x), (x, y), (y, y)}, (5.5.2) 5.6 · 149 · F (x, y) . F = {F (x, y) : (x, y) ∈ X − ∆} “ ” X . F . F ⊂ F . (x, y) ∈ (∪F )− . (x, y) ∈ X − ∆, (x, y) , (x, y) ∈ ∪F . (x, y) = (x, x) ∈ ∆, (x, x) {(x, x)} ∪ (Vx − F ) ∪F , F (a, b) ∈ F ({(x, x)} ∪ (Vx − F )) ∩ F (a, b) = ∅. (5.5.2), F (a, b) = {(a, a), (a, b), (b, b)}. (5.5.1) (x, x) = (a, a) (x, x) = (b, b). (x, x) ∈ F (a, b) ∈ F , (x, x) ∈ ∪F . F . X T2 , , ( X 2.2.3 2.3.4 ). 1973 , Potoczny[340] ( ), ( 6.1.2), ( 6.1.8 ). 1975 , Potoczny Junnila , ( 5.5.2)[341] . 5.5.3 ( [372] , ) X , p ∈ X. X (excluded point topol/ U . , X T0 ogy)U ⊂ X X U = X, p ∈ , X T1 . P X , P = P ∪ {p}. {Fα }α∈A X , α∈A Fα = (Fα ∪ {p}) = α∈A Fα . α∈A , X . , X {{p, x} : x ∈ X} . , 5.5.1 T1 T0 . P “”, P 5.5.9 ( X , {{p, x} : P). x ∈ X} X , {p, x} (x ∈ X) P, X P. 5.5.9 T1 T0 . 5.6 , ( 3.5.1) . T2 ( 3.5.8), , T2 [ 3.5.1 (i)]. T2 , . · 150 · 5 5.6.1 [110, 228] X (countably paracompact), X . , , . 5.6.1 [202] (i) X ; (ii) X {Ui }i∈N , X {Vi }i∈N Vi ⊂ Ui (i ∈ N); X {Wi }i∈N , X {Fi }i∈N Fi ⊂ (iii) Wi (i ∈ N) i∈N IntFi = X; (iv) X {Fi }i∈N i∈N Fi = ∅, X {Wi }i∈N Fi ⊂ Wi (i ∈ N) i∈N W i = ∅. (i) ⇒ (ii). U = {Ui }i∈N . (i) i(V ) V ⊂ Ui(V ) . V U . V ∈ V Vi = ∪{V : V ∈ V , i(V ) = i}. {Vi }i∈N , U Vi ⊂ Ui (i ∈ N). (ii) ⇒ (i). . (ii) ⇒ (iii). {Wi }i∈N X . (ii) X {Vi }i∈N Vi ⊂ Wi (i ∈ N). Fi = X − j>i Vj , Fi Fi ⊂ ji Vj . ji Vj ⊂ ji Wj = Wi , Fi ⊂ Wi (i ∈ N). {Vi }i∈N , x ∈ X x U (x) U (x) Vj . Vj i, U (x) ⊂ Fi , i∈N IntFi = X. (iii) ⇔ (iv). de Morgan . (iii) ⇒ (ii). {Ui }i∈N X . Wi = ji Uj , {Wi }i∈N . (iii) {Fi }i∈N Fi ⊂ Wi (i ∈ N) i∈N IntFi = X. Vi = Ui − j j x IntFj Vi . {Vi }i∈N Vi ⊂ Ui (i ∈ N). . 5.6.1 (iii) {Fi }i∈N ( ji Fj Fi ), (iv) {Wi }i∈N ( ji Wj Wi ). [110] 5.6.1 X X {Fi }i∈N i∈N Fi = ∅, X {Wi }i∈N Fi ⊂ Wi (i ∈ N) i∈N Wi = ∅. 5.6.1 {Ui }i∈N X , (i) {Ui }i∈N ; (ii) {Ui }i∈N ; 5.6 · 151 · (iii) {Ui }i∈N {Vi }i∈N V i ⊂ Ui (i ∈ N); (iv) {Ui }i∈N {Fi }i∈N Fi ⊂ Ui (i ∈ N); (v) {Ui }i∈N Fσ {Ai }i∈N Ai ⊂ Ui (i ∈ N); (vi) {Ui }i∈N {Fj }j∈N . (i) ⇒ (ii), . (ii) ⇒ (iii), 4.4.2 . (iii) ⇒ (iv), . (iv) ⇒ (v), 2.14 . (v) ⇒ (vi), Ai = j∈N Fi,j (i ∈ N), {Fi,j }i,j∈N . (vi) ⇒ (iv). U = {Ui }i∈N X , {Fj }j∈N X , U. U = {Ui }i∈N Fj Uj , U = {Uj }j∈N . U , , . U = {Uj }j∈N X , {Fj }j∈N U Fj ⊂ Uj (j ∈ N). (iv) ⇒ (iii), . (iii) ⇒ (i), Wi = Ui − j l + m, F (l, m) ⊂ F (l, n − l), n > l + m x Wn . . 6.1.6 θ . 6.1.8 θ . . 6.1.1 U X . n ∈ N, Fn = {x ∈ X : ord(x, U ) n}; x ∈ ∪U , Wx = ∩{U ∈ U : x ∈ U }, (i) Fn ; 6.1 · 163 · (ii) {Wx ∩ (Fn − Fn−1 ) : x ∈ Fn − Fn−1 } Fn − Fn−1 , Fn − Fn−1 , F0 = ∅; (iii) V X Fn−1 ⊂ V , {Wx ∩ (Fn − V ) : x ∈ Fn − V } X , Fn − V . (i) x ∈ Fn , Ui ∈ U x ∈ Ui (i = 1, 2, · · · , n + 1). n+1 U = i=1 Ui , U X . , x ∈ U U ∩ Fn = ∅ ( x∈U ord(x, U ) n + 1). (ii) x ∈ Fn − Fn−1 , x ∈ Wx ∩ (Fn − Fn−1 ), U n x, Ui ∈ U x ∈ Ui (i = 1, 2, · · · , n). y ∈ Fn − Fn−1 , Wy ∩ (Fn − Fn−1 ) = Wx ∩ (Fn − Fn−1 ), U ∈ U y ∈ U x ∈ U , U ∩ Wx ∩ (Fn − Fn−1 ) = ∅. , z ∈ U ∩ Wx ∩ (Fn − Fn−1 ), Ui (i = 1, 2, · · · , n) U z, z ∈ Fn − Fn−1 . , {Wx ∩ (Fn − Fn−1 ) : x ∈ Fn − Fn−1 } Fn − Fn−1 . (iii) {Wx ∩(Fn −V ) : x ∈ Fn −V } Fn −V . Fn −V ⊂ Fn −Fn−1 , x ∈ Fn − V , (ii) Wx = ∅. {Wx ∩ (Fn − V ) : x ∈ Fn − V } Fn − V . {Wx ∩ (Fn − V ) : x ∈ Fn − Fn−1 } X . x ∈ Fn − Fn−1 , (ii), Wx ∩ (Fn − V ) = Wx ∩ (Fn − Fn−1 ) ∩ (Fn − V ) Fn − V , (i), Fn − V X , Wx ∩ (Fn − V ) X . (ii) 5.5, {Wx ∩ (Fn − V ) : x ∈ Fn − Fn−1 } X , 5.6, X . . 6.1.1 (iii) {Wx ∩ (Fn − V ) : x ∈ Fn − Fn−1 } X . 6.1.2 X , U X , A, A , X σ A, U . n ∈ N, Fn = {x ∈ X : ord(x, U ) n} x ∈ ∪U , Wx = ∩{U ∈ U : x ∈ U }. 6.1.1, {Wx ∩ F1 : x ∈ F1 } X , F1 . , V1 F1 , U . . Fn nk=1 Vk U , Vk (1 k n) , Gn = ∪{V : V ∈ Vk , 1 k n}, Fn ⊂ Gn . 6.1.1 , {Wx ∩ (Fn+1 − Gn ) : x ∈ Fn+1 − Fn } , Fn+1 − Gn . , Vn+1 Fn+1 − Gn , U . n+1 k=1 Vk Fn+1 . , k ∈ N, Vk k∈N Vk n∈N Fn ⊃ A, U . . · 164 · 6 6.1.8 [416] θ . U θ X , {Vn }n∈N U θ . k ∈ N, An,k = {x ∈ X : ord(x, Vn ) k}. An,k , Vn An,k . 6.1.2, σ Wn,k An,k , Vn . ∪{Wn,k : n, k ∈ N} U σ . 5.1.2 . . 6.1.8 θ θ , , [78] [69]. Smith[368] , 6.1.8. 6.1.9 [368] . X θ . 6.1.10 [368] θ . θ 6.1.4 6.1.9 . . θ + ⇒ ( 6.1.6); θ + ⇒ ( 6.1.8); θ + ⇒ ( 6.1.10). ( θ + meta ) ⇒ . [49] 6.1.5 X (pointwisely collectionwise normal space), {Fα : α ∈ A}, {Gα : α ∈ A} Fα ⊂ Gα (α ∈ A), α = β, Fα ∩ Gβ = ∅. 6.1.11 [49] . X X θ , ( 6.2). . ) ( , 6.1.6 [119] X ortho (orthocompact space), X . ortho . ( 5.1.6), ( ( ) . meta ) ⇒ , 6.1 6.1 · 165 · 6.1 , [69] . ( meta )θ θ θ , . 6.1.7 X Lindelöf (para-Lindelöf space[55] ), X ; meta-Lindelöf [11, 55] , X ; δθ (weakly δθ-refinable space[410] ), X V = n∈N Vn , x ∈ X, n ∈ N, 1 ord(x, Vn ) ω; Vn , δθ (δθ-refinable space[30] ); δθ {∪Vn : n ∈ N} , δθ (weakly δθ-refinable space[367] ). 6.2 . 6.2 [143, 367] δθ δθ ? 6.2 , Burke[67] Lindelöf . 6.1.12 [67] X Lindelöf X U V x ∈ X, x ∈ Int(st(x, V )). . . U X , V U . W W ∈ W , W V . , P W , x ∈ X, x ∈ Int(st(x, P)). V ∈ V , U (V ) ∈ U , V ⊂ U (V ). G(V ) = Int(st(V, P)) ∩ U (V ). G(V ) , x ∈ V, x ∈ Int(st(x, P)), V ⊂ Int(st(V, P)). G = {G(V ) : V ∈ V } X , U . G . · 166 · x ∈ X, 6 P , x N (x) P . P ∈ P W ∈ W , W V , P V . st(V, P) , P ∈ P {st(V, P) : V ∈ V } st(V, P) . N (x) G , G . . Z. Balogh[40] meta-Lindelöf , . Lindelöf [40] . —— . . , , , Fσ . 6.1.8 A (star-finite), A ∈ A , {B ∈ A : B ∩ A = ∅} ; (star-countable), A ∈ A , {B ∈ A : B ∩ A = ∅} . X (strongly paracompact space[109] ), X . , , ⇒ . ( ), 6.2.3. 6.1.1 . ( 6.1.13) , . 6.1.3 [184] A A = ∪{Bα : α ∈ Λ}, Bα , α = β , (∪Bα ) ∩ (∪Bβ ) = ∅. A, B ∈ A , A {C1 , C2 , · · · , Cn } A B , A = C1 , B = Cn Ci ∩ Ci+1 = ∅(1 i < n). A ∈ A , B(A) = {B ∈ A : A A B }. B(A) , A1 , A2 ∈ A , (∪B(A1 )) ∩ (∪B(A2 )) = ∅ B(A1 ) = B(A2 ). . 6.1.4 U = {Uk }k∈N X , U {Fk }k∈N Fk ⊂ Uk (k ∈ N), U . k ∈ N, Fk ⊂ Uk , {G(k, n)}n∈N Fk ⊂ G(k, 1) ⊂ G(k, 1) ⊂ G(k, 2) ⊂ · · · ⊂ G(k, n) ⊂ G(k, n) ⊂ · · · ⊂ Uk . n ∈ N, Vn = ∪{G(i, n) : 1 i n}. H(1, 1) = V2 ∩ G(1, 2); H(k, n) = (Vn+1 − Vn−1 ) ∩ G(k, n + 1) (n > 1; 1 k n). {H(k, n) : k, n ∈ N, 1 k n} , U . . 6.1 · 167 · 6.1.4 5.6.2 , . 6.1.13 [365] , (i) X ; (ii) X . (i) ⇒ (ii) . (ii) ⇒ (i). U X , U V . 6.1.3, V V = ∪{Bα : α ∈ Λ}, Bα α = β , (∪Bα ) ∩ (∪Bβ ) = ∅. (ii) , Bα (α ∈ Λ) Bα = {Bα,n : n ∈ N}, n ∈ N, {Bα,n : α ∈ Λ} , n∈N {Bα,n : α ∈ Λ} U σ ( 5.1.2 X ). α ∈ Λ, Zα = ∪Bα , Zα X , . Bα = {Bα,n : n ∈ N} Zα , {Fα,n }n∈N Fα,n ⊂ Bα,n , n ∈ N ( 5.6.1). 6.1.4, Wα Zα , Bα . α∈Λ Wα X , U . . 6.1.1 [301] Lindelöf . 6.1.13 (ii) . . 6.1.1 5.1.1. 1977 , [265] . 6.1.9 [265] X P X ⊂ X , x ∈ X X P . P = n∈N Pn , n−1 Pn X . P1 , n 2, Pn X − i=1 Pi∗ (Pi∗ = ∪{P : P ∈ Pi }), P σ (σ-relatively discrete); ∗ P1 n 2, Pn = {P − n−1 i=1 Pi : P ∈ Pn } n−1 ∗ X − i=1 Pi , P σ (σ-relatively discrete and relatively closed). X (quasi-paracompact) ( (strongly quasi-paracompact)), X σ (σ ) . . . n , P = n∈N Pn σ , n ∈ N, i=1 Pi∗ X . ( 6.1.1), . . 6.1.14 [265] . V X , V U = A m Am . {Uα }α∈A . m ∈ N, · 168 · 6 ξ ∈ Am , ξ = (α1 , α2 , · · · , αm ). Uξ = Uα1 ∩ Uα2 ∩ · · · ∩ Uαm , Um = {Uξ : ξ ∈ Am }. U m , Um∗ ⊃ Em . Em X Pm = {Uξ ∩ Em : ξ ∈ Am }. ∗ , Pm U , Pm = Em . U , X = i∈N Ei , P = i∈N Pi X. Am ξ, η, Uξ ∩ Uη ∩ Em = ∅, Uη ∗ Pm , Pm Um . X− m−1 Pi∗ = X − i=1 Pm X − m−1 i=1 m−1 Ei ⊂ Um∗ , i=1 Pi∗ , m−1 Uξ ∩ Em = X − Pi∗ ∩ (X − ∪{Uη : η ∈ Am , η = ξ}), i=1 Uξ ∩ Em (= Uξ ∩ Em − m−1 i=1 Pi∗ ) X − m−1 i=1 Pi∗ . P U , V σ . X . . 6.1.14 , . 6.1.15 [269, 446] θ . V θ X , {Un }n∈N V , x ∈ X, n ∈ N ord(x, Un ) < ω. 6.1.14 , Un (n ∈ N), σ Pn = m∈N Pn,m , Xn = {x ∈ X : ord(x, Un ) < ω}. n∈N Pn X. , W1 = P1,1 , W2 = P1,2 , W3 = P2,1 , W4 = P1,3 , W5 = P2,2 , · · · . , W = n∈N Wn V σ , X. X . . 6.1.16 [269, 446] θ . U X , σ P = P ∈ P1 x ∈ P n∈N Pn U . n = 1 , P1 X , x V (x) P1 . x ∈ P, V (x) P . V (P ) = x∈P V (x) P . U (P ) ∈ U P ⊂ U (P ). B(P ) = V (P ) ∩ U (P ), B1 = {B(P ) : P ∈ P1 }, 6.1 · 169 · , B1 U , B1∗ ⊃ P1∗ . x ∈ P1∗ , x ∈ P0 ∈ P1 . P = P0 , B(P ) ∩ P0 = ∅. x ∈ / B(P ). x ∈ P1∗ , ord(x, B1 ) = 1. ∗ n 2, Pn X − n−1 i=1 Pi . 6.1.9, x ∈ X − n−1 ∗ Pn . i=1 Pi , x X V (x) n−1 ∗ ∗ ∗ ∗ Bn U , Bn ⊃ Pn − n−1 i=1 Pi x ∈ X − i=1 Pi ⊃ ∗ Pn∗ − n−1 i=1 Pi , ord(x, Bn ) = 1. B = n∈N Bn . B X , U . x ∈ X, n0 x ∈ Pn∗ , ord(x, Bn0 ) = 1. X θ . . 6.1.17 [269, 446] θ . U X , σ P = n∈N Pn U . 6.1.16 , θ B = n∈N Bn ∗ U , B1∗ ⊃ P1∗ , Bn∗ ⊃ Pn∗ − n−1 i=1 Pi (n 2). P σ n , 6.1.9 , n ∈ N, i=1 Pi∗ X . B1 = B1 ; Bn = n−1 B− Pi∗ : B ∈ Bn (n 2). i=1 B = ∗ n∈N Bn θ , U . {Bn }n∈N . x ∈ X, n0 ∈ N x ∈ Pn∗0 , n > n0 , x ∈ / Bn∗ . X θ . . , 6.3 . 6.3 [446], [269], [158]). , θ ( [265], + ⇒ ? 6.1.10 “ θ + ⇒ ” , “ θ ” “ θ ” ( 6.1.8 ). [265] “” “ θ ” 6.3 , . 6.1.18 [265] . . · 170 · 6 6.1.11 “θ + ⇒ ”. [446] [269] “ ” “θ ”, Boone[49] . 6.1.19 [269, 446] X X . . 5.6 (countably subparacompact[195] ) (countably weakly paracompact countably metacompact[202] ) meso (countably mesocompact[418] ) θ (countably θrefinable[161] ) , meso θ “” “” . 6.1.6 6.1 , . 6.1.20 [195] X X U = {Un }n∈N {Fn,j }n,j∈N Fn,j ⊂ Un (n, j ∈ N). . U = {Un }n∈N X , F = j∈N Fj X σ , U . Fj Un Fn,j , Fn,j ⊂ Un (n, j ∈ N) . . Fn,j Fn,j = {Fn,j } (n, j ∈ N) . . 6.1.2 [195] . Fσ , 6.1.20 . . 6.1.21 [195] . U = {Un }n∈N X . {Fn,j }n,j∈N Fn,j ⊂ Un (n, j ∈ N). V1 = U1 , Vn = Un − ∪{Fk,j : k < n, j < n} (n 2), V = {Vn }n∈N , U . . , . , 6.1.1. , ( 5.6.1) . 6.1.22 [202] (i) X ; (ii) X {Un }n∈N , X {Vn }n∈N Vn ⊂ Un (n ∈ N); (iii) X {Wn }n∈N , X {Fn }n∈N Fn ⊂ Wn (n ∈ N); 6.1 · 171 · (iv) X {Fn }n∈N n∈N Fn = ∅, X {Wn }n∈N Fn ⊂ Wn (n ∈ N) n∈N Wn = ∅. 5.6.1 , . 6.1.23 [161] (i) X ; (ii) X θ ; (iii) X {Fn }n∈N n∈N Fn = ∅, X Gδ {Gn }n∈N Fn ⊂ Gn (n ∈ N) n∈N Gn = ∅. (i) ⇒ (ii), . (ii) ⇒ (iii). X θ , {Fn }n∈N X n∈N Fn = ∅. U = {X − Fn : n ∈ N}, U X , θ {Vn }n∈N . Gn,j = st(Fn , Vj ), Gn = Gn,j , j∈N Gn Gδ Fn ⊂ Gn (n ∈ N). n∈N Gn = ∅. , x ∈ n∈N Gn . j0 ∈ N ord(x, Vj0 ) < ω. ord(x, Vj ) = k, V1 , V2 , · · · , Vk ∈ Vj0 x ∈ Vi (i = 1, 2, · · · , k), V ∈ Vj0 V = Vi (i = 1, 2, · · · , k), x ∈ / V . i k, ni ∈ N Vi ⊂ X − Fni . n = max{n1 , n2 , · · · , nk }, i k, Vi ⊂ X − Fn . x ∈ Gn,j0 = st(Fn , Vj0 ), V ∈ Vj0 x ∈ V V ∩ Fn = ∅. x ∈ V ∈ Vj0 , V V1 , V2 , · · · , Vk , V ⊂ X − Fn . V ∩ Fn = ∅ . (iii) ⇒ (i). (iii) ⇒ 6.1.22 (iv), 6.1.22 . {Fn }n∈N X , n∈N Fn = ∅. (iii) X Gδ {Gn }n∈N Fn ⊂ Gn (n ∈ N) n∈N Gn = ∅. n ∈ N, Gn = j∈N Gn,j , Gn,j ; Un = ∩{Gi,j : 1 i, j n}. , Un , Fn ⊂ Un (n ∈ N) n∈N Un = ∅. 6.1.22 (iv). . , 6.4 . 6.4 · 172 · 6 6.1.1 [235] [0, ω1 ) × [0, ω1 ] . X = [0, ω1 ) × [0, ω1 ], H = {(α, ω1 ) ∈ X : α < ω1 }, K = {(α, α) ∈ X : α < ω1 }, H, K X . X , 6.1.20, X {X − H, X − K} F . {F ∈ F : F ∩ H = ∅} = {Hn }n∈N , {F ∈ F : F ∩ H = ∅} = {Gn }n∈N . n ∈ N α < ω1 , (α, ω1 ) ∈ / Gn , γn,α < ω1 α < γn,α ({α} × (γn,α , ω1 ]) ∩ Gn = ∅. γα = sup{γn,α : n ∈ N}, α < γα < ω1 , Gn ∩ {(α, γ) ∈ X : γα < γ ω1 } = ∅. , m ∈ N α < ω1 , β, γ < ω1 α β < γ (β, γ) ∈ Hm . , , n ∈ N, αn < ω1 αn β < γ < ω1 , (β, γ) ∈ / Hn . α0 = sup{αn : n ∈ N}, α0 < ω1 , γ0 ∈ (γα0 , ω1 ), (α0 , γ0 ) ∈ / n∈N (Hn ∪ Gn ) = X, . Y = ([0, ω1 ) × [0, ω1 )) ∩ Hm . Hm , n ∈ N, (βn , γn ) ∈ Y γn βn+1 < γn+1 . β = sup{βn : n ∈ N}, βn < γn βn+1 , [0, ω1 ) {βn } {γn } β. (β, β) ∈ Hm ∩ K, K ∩ Hm = ∅ . [0, ω1 ) × [0, ω1 ] ( 3.23), 6.1.1 . 5.6.1, 5.6.2, 6.1.22, 6.1.23, θ . 6.2 6.1 . . Micheal[280] ( 5.1.4), T2 ( 5.2.1) , . θ . 6.2.1 (Burke [60, 61] ) . 6.1.1 (iii), 5.2.1 . . [414] 6.2.2 (Worrell ) . 6.1.2 (ii), 5.2.1 . . 6.2 · 173 · 6.2.3 (Junnila [217] ) θ θ . 6.1.4 (ii), 5.2.1 . . meso , 6.1.3 (ii) , 6.1.1 (iii) 6.1.2 (ii) 6.1.4 (ii) , . 6.2.4 [147] Meso meso . X meso , f : X → Y ( 5.5.1). V = {Vβ }β∈B Y , U = {f −1 (Vβ )}β∈B X . 6.1.3 (ii), U F = {Fα }α∈A F X . f , {f (Fα )}α∈A Y f , {f (Fα )}α∈A Y , V . . 6.1.3 (ii), Y meso . . 6.2.5 [147] Meso meso . ( 5.5.1). . meso , 5.2.2 “ () ” , , , . 6.2.1 , 6.2.2 meso . 6.2.1 [244] T1 . X = (N ∪ {0}) × (N ∪ {0}) − {(0, 0)}, N . m, n, k ∈ N, V (n, m) = {(n, k) : k m}. X (i) (n, m) ∈ N × N {{(n, m)}}; (ii) (n, 0) {V (n, m) ∪ {(n, 0)}}m∈N ; (iii) (0, n) {V (n, m) ∪ {(0, n)}}mn . X T1 . X . X {0} × N 0∗ Y = (N × (N ∪ {0})) ∪ {0∗ }. {0} × N X , . T1 6.2.2 [244] f . Y . T0 meso . 6.2.1 X, , (i), (ii) ; (iii) {V (n, n) ∪ {(0, n)}} . (0, n) T0 , . (0, n) (n, n), · 174 · 6 , {0} × N 0∗ Y , f . ∗ Y . , Y 0 {{(n, m) : m n > 0} ∪ {0∗ }} . Y . ( 6.11), Y meso . 6.2.2 T0 meso . 6.2.2 meso , meso . T2 , meso ? [147] 6.2.6 meso meso . 6.6.9 . θ ( 6.1.5) , . θ ( , ). , θ . Burke , , [70], . 6.2.7 [70] θ θ . [66, 369] θ ? θ , . , θ ( 6.1.5) ( 6.1.5 (ii)). [369] θ ? ortho , Gruenhage[164] ortho . [65] Burke ortho . [66] ortho ? , . Ponomarev[336] “ ”, ( 6.2.3). 6.2.3 ( ) X F1 , F2 , X [ [114] 5.3.F(e)]. F = F1 ⊕ F2 (), f : F → X . , ( 6.14). , 5.5.3 X . , . 6.2 ( 6.1.7 ) , Burke Lindelöf . 6.2.8 [67] Lindelöf Lindelöf Lindelöf . 6.2 · 175 · X Lindelöf , f : X → Y Lindelöf . V −1 −1 Y , f (V ) = {f (V ) : V ∈ V } X . X U f −1 (V ). f (U ) = {f (U ) : U ∈ U }, f (U ) Y , V . f (U ) . y ∈ Y, f −1 (y) Lindelöf , U , f −1 (y) U ( 5.4). Uy , f −1 (y) ⊂ Uy . f , 1.5.1, Gy f −1 (y) ⊂ Gy ⊂ Uy , Gy = f −1 (f (Gy )) f (Gy ) Y . Gy U , f (Gy ) f (U ) . f (U ) . , y ∈ Y , y ∈ f (Gy ) ⊂ ∪{f (U ) : U ∈ U , y ∈ f (U )} = st(y, f (U )). f (Gy ) , y ∈ Int(st(y, f (U ))). 6.1.12 Y Lindelöf . . Burke[67] ( ) Lindelöf Lindelöf . , . 6.1 6.2 ( meso ortho ) Lindelöf ( “” , 5.2.3 ). 6.2.9 f : X → Y X Y Lindelöf ,Y θ θ , X θ θ . 5.2.3 () , 6.1.1 ( ) (ii) ; 6.1.13 () . ( {Wy,n }n∈N ). U = {Uα }α∈A X . V {V : V ∈ V } U . y ∈ Y, f −1 (y) Lindelöf , f −1 (y) V {Vy,i }i∈N . Uy,i ∈ U V y,i ⊂ Uy,i (i ∈ N). Wy,1 = Uy,1 ∩ Vy,i , i∈N Wy,n = Uy,n − i 1; n ∈ N), i∈N · 176 · 6 {Wy,n }n∈N X , f −1 (y). Wy = n∈N Wy,n f −1 (y) , f , 1.5.1, Wy f −1 (y) ⊂ Wy ⊂ Wy , Wy = f −1 (f (Wy )) f (Wy ) Y . {f (Wy )}y∈Y Y . Y , , , {Hy }y∈Y , y ∈ Y, Hy ⊂ f (Wy ) . f −1 (Hy ) ⊂ Wy ⊂ Wy = n∈N Wy,n . W = {Wy,n ∩ f −1 (Hy ) : n ∈ N, y ∈ Y }. , W X , U . W . x ∈ X. f (x) ∈ Hy x ∈ f −1 (Hy ), x f −1 (Hy ) (y ∈ Y ), f −1 (Hy1 ), · · · , f −1 (Hyk ). l k, {Wyl ,n }n∈N , x {Wyl ,n ∩ f −1 (Hyl )}n∈N , x W . W . . Meso Lindelöf meso ? [159] . , . [212] , . 6.2.10 Lindelöf ( [442] [156]). 6.2.10 f : X → Y X Y Lindelöf . Y θ Lindelöfmeta-Lindelöfδθ δθ δθ , X . 5.2.3 , , . 6.2.9 6.2.10 θ [156] δθ [156] D. K. Burke[69] . 6.2.11 f : X → Y X Y . Y [272] 6.2.10 , X 6.2.9, meso ( X T2 ). ⇒ Lindelöf , , 6.2.9 . , X T2 , [59] . . 2.1.1 X O, A ⊂ O, A O ClO (A). , (precise) ( 5.1.3). U , . 5.6.1 (i) ⇒ (ii). 6.2 · 177 · 6.2.1 T2 X U K, O K ⊂ O {U ∩ O : U ∈ U } O . U {Ui }in K. x ∈ K, i(x) n, x ∈ Ui(x) . Fx = K − Ui(x) , Fx X x ∈ / Fx . 3.1.4, Vx , Wx , x ∈ Vx , Fx ⊂ Wx Vx ∩ Wx = ∅, V x ∩ Wx = ∅. Gx = Wx ∪ Ui(x) , Gx K ⊂ Gx . K {xj }jm , K ⊂ jm Vxj . O= Gxj ∩ Vxj ∩ Ui , jm jm in O K ⊂ O. j m, Pj = ClO (Vxj ∩ O). Pj O , O = jm Pj , Pj − Ui(xj ) ⊂ (Gxj − Ui(xj ) ) ∩ ClX (Vxj ) ⊂ Wxj ∩ ClX (Vxj ) = ∅, Pj ⊂ Ui(xj ) . {Pj }jm {U ∩ O : U ∈ U } O . . 6.2.11 X T2 , Y , X . U X . y ∈ Y, f −1 (y) X , 6.2.1, X Oy , f −1 (y) ⊂ Oy Oy {U ∩ Oy : U ∈ U } . f , 1.5.4, Y Hy , y ∈ Hy −1 −1 f (Hy ) ⊂ Oy , f (Hy ) {U ∩ f −1 (Hy ) : U ∈ U } Fy . H = {Hy : y ∈ Y }. Y , H i∈N Wi , Wi = {Wiy : y ∈ Y } Wiy ⊂ Hy (i ∈ N; y ∈ Y ). i ∈ N, Pi = {f −1 (Wiy ) ∩ F : y ∈ Y, F ∈ Fy }. P = i∈N Pi U σ . , P U . i ∈ N, f −1 (Wi ) y ∈ Y , Fy , Pi σ . y ∈ Y F ∈ Fy , x ∈ X − (f −1 (Wiy ) ∩ F ), Lx = X − f −1 (Wiy ), x ∈ X − f −1 (Wiy ), f −1 (Hy ) − F, x ∈ f −1 (Wiy ) − F. Lx x X Lx ∩ (f −1 (Wiy ) ∩ F ) = ∅, f −1 (Wiy ) ∩ F . X . . 6.1.1 T1 X. f : , Y = X/X , X X → X/X, f · 178 · 6 . 6.2.11 T2 . 6.2.9 X . [156] 6.2.4 X = [0, 1), {[0, t) : 0 t 1} ∪ {{x} : x [0, 1) } X . X θ . Q [0,1) . Q . θ Q θ . ( 6.3.1), X U , , U ∗ = ∪{U : U ∈ U }. {rn } Q 1 , U = {[0, rn ) ∩ Q : n ∈ N} Q . V = n∈N Vn U θ . {Vn∗ : n ∈ N} [0, t) ∩ Q, t ∈ [0, 1). s1 ∈ Q, . , V n1 ∈ N, 0 < ord(s1 , Vn1 ) < ∞, ord(s1 , Vn1 ) = m1 . s2 ∈ Q, s2 > max{t : s1 ∈ [0, t) ∩ Q ∈ Vn1 }, n2 ∈ N, 0 < ord(s2 , Vn2 ) < ∞, ord(s2 , Vn2 ) = m2 . Vn2 Vn1 (n1 = n2 ), , s1 < s2 , ord(s1 , Vn1 ) = m1 + m2 , . {sk }k∈N ⊂ Q {nk }k∈N k ∈ N, 0 < ord(sk , Vnk ) < ∞, 0 s1 < s2 < · · · < sk < · · · < 1, k1 = k2 , nk1 = nk2 . , k ∈ N, s1 ∈ Vn∗k . {Vn∗ }n∈N . X θ . X X/Q Y . Y ( Y {Q} f : X → Y . 6.2.8 Y ), , 6.2.8 ( 5.2.3 ) . , Lindelöf [269] . X = N, T = {∅, X} ∪ {{1, 2, · · · , n} : n ∈ N}, (X, T ) . θ . g : X → X/X , . X/X X T0 . T2 . Bennett Lutzer[45] ( 6.4). X T2 , θ ( θ [159] ), θ . X T2 . f . 5.2.3 6.2.9 ( θ ) T2 . 6.2.5 [348] ortho ortho . p : [0, ω1 ) × [0, ω1 ] → [0, ω1 ). [0, ω1 ] , p . [0, ω1 ) ortho [0, ω1 ) × [0, ω1 ] ortho . , 6.2.2 pressing down lemma. 6.2.2 f : [0, ω1 ) → [0, ω1 ) x ∈ [0, ω1 ) 6.2 · 179 · f (x) < x, c ∈ (0, ω1 ) x ∈ [0, ω1 ), y x f (y) < c. , c ∈ (0, ω1 ), [0, ω1 ) c x y x f (y) c . x α f (x) < x. x1 α c , x1 x2 y x2 , f (y) x1 . x2 c , x2 x3 y x3 , f (y) x2 . , xn c , xn xn+1 . β {xn } . y xn+1 , f (y) xn . β xn+1 (n ∈ N), y β, f (y) xn (n ∈ N). β , y β , f (y) β. y = β, f (β) β. β x1 α, f (β) < β, . . 6.2.3 U = {Uα }α∈A [0, ω1 ) , c ∈ (0, ω1 ) st(c, U ) ⊃ [c, ω1 ). Uα , {0} (αx , x] , αx < x < ω1 . f (x) = αx , 0 < x < ω1 . 6.2.2 c ∈ (0, ω1 ) x ∈ [0, ω1 ), y x αy < c. c < x < ω1 ⇒ x, c ∈ (αy , y]. st(c, U ) ⊃ [c, ω1 ). . [0, ω1 ) ortho . U [0, ω1 ) (Uα ). 6.2.3, c ∈ (0, ω1 ) st(c, U ) ⊃ [c, ω1 ). [0, c] ( 3.1.1 ), U , U . V = U ∪ {Uα ∩ (c, ω1 ) : c ∈ Uα ∈ U }. V U . . [0, ω1 ) × [0, ω1 ] ortho . U = {[0, α] × (α, ω1 ] : α ∈ [0, ω1 )} ∪ {[0, ω1 ) × [0, ω1 )}. V U , 6.2.3 [0, ω1 ) × {ω1 } (V ), c ∈ (0, ω1 ) st((c, ω1 ), V ) ⊃ [c, ω1 ) × {ω1 }. ∩{V ∈ V : (c, ω1 ) ∈ V } ⊂ [0, ω1 ) × {ω1 }. V . [0, ω1 ) ortho , [0, ω1 )×[0, ω1 ] ortho . 6.2.5 . , 6.2.5 ortho ortho , ( 6.4.1). [0, ω1 ) , . [0, ω1 ) ( 3.11), ( 6.17), , [0, ω1 ) ( 3.5.10). 6.2.3 . [0, ω1 ) {x : x < α} (α ∈ [0, ω1 )) · 180 · 6 U. U V , 6.2.3 c ∈ (0, ω1 ) st(c, V ) ⊃ [c, ω1 ). st(c, V ) {x : x < α} , [0, ω1 ) ( 5.1.1). Stone ( 5.1.3) [0, ω1 ) . 6.1.10 6.1.18 [0, ω1 ) θ θ . [0, ω1 ) δθ ( 6.6.1 ). , [0, ω1 ) ( 3.10), [0, ω1 ) ( 3.10 ). , ( 5 ) . f : X → Y . X, Y , (open compact mapping[21] ), f y ∈ Y, f −1 (y) ( , 4.4.8 ). , . ( [16] , meso [147] [260] 6.10) , . , (meta )θ ortho meta-Lindelöf ( 6.2.12 6.2.13). 6.2.12 θ meta-Lindelöf θ meta-Lindelöf . meta-Lindelöf , . θ . . X θ , f : X → Y . V Y −1 , U = {f (V ) : V ∈ V } X . 6.1.4 (iii), {Wn }n∈N U , x ∈ X, n ∈ N U ⊂ U , x ∈ W ∈ Wn , W U . {Wn }n∈N . , {Wk }k∈N . Wk Wk = Wn1 ∧ Wn2 ∧ · · · ∧ Wnm , X , U . f , k ∈ N, Gk = {f (W ) : W ∈ Wk } Y , V . {Gk }k∈N Y . y ∈ Y , f , f −1 (y) = {x1 , x2 , · · · , xm }. xi (i = 1, 2, · · · , m), ni ∈ N Ui ⊂ U , xi ∈ W ∈ Wni , W Ui . xi (i = 1, 2, · · · , m), xi ∈ W ∈ Wk = Wn1 ∧ Wn2 ∧ · · · ∧ Wnm , W m i=1 Ui . y ∈ Y , k ∈ N V ⊂ V , 6.3 · 181 · V = {V ∈ V : f −1 (V ) ∈ m i=1 Ui }, y ∈ f (W ) ∈ Gk , f (W ) V . 6.1.4 (iii), Y θ . . , Junnila [219] θ [217] . Gittings[162] ortho ? Kofner[234] meta ( ortho ) ortho . , Scott[351] [435] . , . 6.2.13 [351, 435] Ortho ortho . X ortho , f : X → Y . V Y −1 , {f (V ) : V ∈ V } X . X ortho , −1 U = {Uα }α∈A {f (V ) : V ∈ V }. f , {f (Uα )}α∈A Y , V . {f (Uα )}α∈A . A ⊂ A, α∈A f (Uα ) = ∅, y ∈ α∈A f (Uα ), f −1 (y)∩ Uα = ∅ (α ∈ A ). f , f −1 (y) = {x1 , x2 , · · · , xk }. Ai = {α : α ∈ A , xi ∈ Uα }(i = 1, 2, · · · , k). , Ai . k A = i=1 Ai . xi (i = 1, 2, · · · , k), xi ∈ α∈A Uα , y ∈ f ( α∈A Uα ) ⊂ i i f (U ), i = 1, 2, · · · , k . α α∈A i k k y∈ f Uα ⊂ f (Uα ) = f (Uα ). i=1 i=1 α∈Ai α∈A α∈Ai k {Uα }α∈A , α∈A Uα X . f , i=1 i f ( α∈A Uα ) Y . y α∈A f (Uα ) . y i α∈A f (Uα ) . {f (Uα ) : α ∈ A} , Y ortho . . θ θ δθ δθ δθ ? . ( [162] [248]). [162] [248], . 6.3 ( 3.5.7 5.3.1) · 182 · 6 , . A ⊂ X ⊂ X, A X IntX A. 6.3.1 X 6.1 6.2 ( T2 , meso Lindelöf ), X Fσ ( X Fσ ). . . meso Lindelöf . X , X X Fσ . X X = n∈N Fn , Fn . U X , X . n ∈ N, Un = {U ∈ U : U ∩ Fn = ∅}, X Un ∪ {X − Fn } Gn . W1 = {G ∩ X : G ∈ G1 , G ∩ F1 = ∅}, Wn = G ∩ X − Fi : G ∈ Gn , G ∩ Fn = ∅ (n > 1). i n) . n∈N Wn X , U . Lindelöf . Gn , Wn . x ∈ X , x ∈ IntX Fn . IntX Fn x ( X ) Wm (m > n) . x n∈N Wn , n∈N Wn X , U . . 6.3.1 6.3.1 . 6.3.1 6.3.1 meso θ [160] δθ Burke[69] . 6.3.1 Fσ . N (A) ( 4.1.2), A , ( 6.3). N (A) [0, 1] N (A) × [0, 1] ( 6.4.1). N (A) × [0, 1] Fσ N (A) × (0, 1) ( 6.3). 6.3 · 183 · ( 5.3.2), . 6.3.2 [428] X , (i) X ; (ii) X G , G σ ; (iii) X G Fσ , G σ . (ii) ⇒ (iii) . (i) ⇒ (ii) (iii) ⇒ (i). (i) ⇒ (ii). X , G x, x U (x) U (x) ⊂ G. U = {U (x)}x∈G G . G G σ V = n∈N Vn , Vn G . V G V U (x) , U (x) ⊂ U (x) ⊂ G, V X . V (ii). (iii) ⇒ (i). G X . G . (iii), G G = i∈N ( αi ∈Ai Xαi ). Xαi X Fσ , i ∈ N, {Xαi }αi ∈Ai G . Xαi = j∈N Fαi ,j , j ∈ N, Fαi ,j X . U G . Uαi ,j = {U ∩ Fαi ,j : U ∈ U } (j ∈ N; αi ∈ Ai ). Uαi ,j Fαi ,j . Fαi ,j , ( 6.3.1). Uαi ,j Fαi ,j σ Vαi ,j = k∈N Vαi ,j,k . k ∈ N, Vαi ,j,k Fαi ,j . Fαi ,j , Vαi ,j,k X , G . Vα∗i ,j,k = ∪{V : V ∈ Vαi ,j,k } ⊂ Fαi ,j ⊂ Xαi . {Xαi }αi ∈Ai G , V = i,j,k∈N αi ∈Ai Vαi ,j,k G . Vαi ,j,k αi ∈Ai G σ , U . G . . , Junnila [224] 1986 (scattered partition) , . , [450] · 184 · 6 θ θ . , meso [450, 425] . 6.4 ( ). . ( 5.4.1). . 6.2.11 6.1 ( ortho ) 6.2 . . 6.4.1 X 6.1 (ortho , T2 ) 6.2 , Y , X × Y . 5.4.1 . 5.4.2: “T2 σ ”. ( 5.4.1) , T2 Fσ ( 5.3.1). 6.4.1 6.3.1 . 6.4.2 T2 X 6.1 ( ortho ) 6.2 (meso Lindelöf ), Y σ , X × Y . 5.4.2 . Ortho 6.4.1. 6.2.5 [0, ω1 ) ortho , [0, ω1 ) [0, ω1 ] [0, ω1 ) × [0, ω1 ] ortho , ortho 6.4.1, 6.4.2. 6.4.1, 6.4.2, 6.4.1. 6.4.1 6.3.1 N (A) ( 4.1.2), A , ( 6.3), N (A) σ (0, 1) N (A) × (0, 1) ( 6.3.1 6.3). 6.5 , . 6.1 6.2 . 6.5 · 185 · , (5.5 ) , . 6.5.1 [194] F = {Fα }α∈A X , Fα (α ∈ A) X , X . F A , F = {Fα : 0 α < η} ( α, η ). V = {Vσ : σ ∈ B} X . F , V Fα . V . α (0 α < η), Vα . V0 . V Vσ F0 , F0 {Vσ ∩ F0 : σ ∈ B}. F0 , ( F0 ) {Uσ : σ ∈ B} Uσ ⊂ Vσ ∩ F0 (σ ∈ B). Vσ0 = Vσ ∩ (X − (F0 − Uσ )), V0 = {Vσ0 : σ ∈ B}. V0 (i) V0 X ; (ii) Vσ0 ⊂ Vσ , σ ∈ B; (iii) x ∈ F0 , ord(x, V0 ) < ω; (iv) x ∈ Vσ − F0 , x ∈ Vσ0 . α (1 α < η). β < α Vβ = {Vσβ : σ ∈ B} (I) Vβ X ; (II) σ ∈ B, γ < β, Vσβ ⊂ Vσγ ; (III) x ∈ γ<β Fγ , ord(x, Vβ ) < ω; (IV) x ∈ γ<β Vσγ − Fβ , x ∈ Vσβ . Vα = {Vσα : σ ∈ B} (I)∼(IV). σ ∈ B, Wσα = Vσβ Wα = {Wσα : σ ∈ B}. β<α Wα X . x ∈ X, β = max{γ < α : x ∈ Fγ } ( F , . γ < α, x ∈ / Fγ , β = 0). (I), Vβ x ∈ / Fβ+1 , (IV), x ∈ Vσβ+1 , , x ∈ Vσβ . (II), x ∈ γβ Vσγ . x ∈ Vσβ (β > β). x ∈ Wσα , Wα X . Wσα . β = max{γ < α : Vσ ∩ Fγ = ∅} ( V Fα . γ < α, Vσ ∩ Fγ = ∅, β = 0). , Vσ0 ∩ F1 = ∅, Vσ0 = Vσ1 . , Vσ0 , Vσ1 , · · · , Vσβ , · · · . Wσα = β<α Vσβ . Wα . Wα Vα V V0 . . Vα (I)∼(IV). · 186 · 6 , Wσ = α<η Vσα W = {Wσ : σ ∈ B}. W Wα . , W V , (III), W , X . . “”. . 6.5.2 [356] θ . θ ( 6.2.1 6.2.2 6.2.3), 5.5.5 . . 6.5.1 6.5.2 , . Worrell . , θ Burke Junnila . . 6.5.3 Meso θ . meso θ ( 6.2.5 6.2.7), 5.5.3 . . 6.5.4 [250] T1 , meso . T1 , meso ( 6.2.4), 5.5.9 ( T1 ) . . 6.5.5 [138] Lindelöf . Lindelöf Lindelöf ( 6.2.8), 5.5.7 . . 6.5.2∼ 6.5.5 . , ( . ortho 6.2.7 ), , ortho Scott[349] . 6.5.1 , , Scott . 6.5.6 [349] Ortho . , ( 6.2.3), . 6.1 6.2 , θ meta-Lindelöf δθ δθ δθ . 6.6 Iso · 187 · 6.6 Iso iso . 6.6.1 [36] X iso (iso-compact space), . 6.1 6.1 6.2 6.3 ( ortho ) iso . iso Dieudonné[106] , Burke[60, 61] , Arens Dugundji[13] , meta-Lindelöf Aquaro[11] , θ Worrell Wicke[416] , δθ Aull[30] , θ δθ Wicke Worrell[410] , [265] . 6.1 6.2 6.3 , δθ iso . 6.6.1 X U S, M ⊂ S U M , S ⊂ ∪{U ∈ U : U ∩ M = ∅}. S . {xα }α<η xγ ∈ S − st({xα : α < γ}, U ). S {xα } x0 . α < γ, xα . Eγ = S − st({xα : α < γ}, U ). Eγ = ∅, ; , Eγ xγ . {xα }α<η . M = {xα : α < η}, M . . [410] 6.6.1 δθ iso . δθ , 6.6.1 δθ . X δθ , U X , V = n∈N Vn , x ∈ X, n ∈ N 0 < ord(x, Vn ) ω. Cn = {x ∈ X : 0 < ord(x, Vn ) ω}. , X = n∈N Cn . F (U ) X U . X ∈ F (U ). X . . X∈ / F (U ), Cm ∈ / F (U ). n0 m Cm ∈ / F (U ). W0 U Cm (m < n0 ), E0 = X −W0∗ . C1 ∈ / F (U ), E0 = X. E0 X , E0 ∩ Cm = ∅ (m < n0 ). k ∈ N, 0 j k, · 188 · 6 (i) Ej X ; (ii) nj m Ej ∩ Cm ∈ / F (U ); (iii) Ej+1 ⊂ Ej ( Ej+1 ); (iv) Ej ∩ Cm = ∅ (m < nj ). B = Ek − Vn∗k , B . B ∈ / F (U ). , U U1 B. ∅ = (Ek ∩ Cnk ) − U1∗ ⊂ Vn∗k , 6.6.1, M ⊂ (Ek ∩ Cnk ) − U1∗ , (Ek ∩ Cnk ) − U1∗ ⊂ ∪{V ∈ Vnk : V ∩ M = ∅} Vnk M . M ⊂ Ek − U1∗ ⊂ Vn∗k Ek − U1∗ , M ω , M . Ek ∩ Cnk ∈ F (U ), . / F (U ), Cm B ∩ Cm ∈ / F (U ). nk+1 m B∈ B ∩ Cm ∈ / F (U ). Wk+1 U , B ∩ Cm (m < nk+1 ). ∗ Ek+1 = B − Wk+1 , (i)∼(iv) j = k + 1 . , {Ej }j∈N , {nj }j∈N (i)∼(iv). (iv), j∈N Ej = ∅. X . X ∈ F (U ). . . Ortho iso . 6.2.3 [0, ω1 ) [0, ω1 ) ortho , [0, ω1 ) . 6.6.1 ortho iso . , 6.6.1 [0, ω1 ) δθ . , [0, ω1 ) δθ iso . iso Worrell Wicke[417] [ω1 , ∞)r (weakly [ω1 , ∞)r -refinable space) δθ ; , Davis[102] θL (θL-property) , Arhangel’skiı̌[23] pure (pure space) δθ . Sakai[347] neat (neat space) . iso , . meta Lindelöf ( [372] 60). Scott[350] Watson[407] . Burke Davis[72] Lindelöf . , Watson[408] meta-Lindelöf . iso . 6.6.1 iso . iso Fσ . 6.6.2 [36] Iso Fσ iso . E iso X Fσ . E = n∈N Fn , Fn (n ∈ N) iso . M E . U X M . n ∈ N, M ∩ Fn Fn , , U 6.6 Iso · 189 · . M U . M , U , M . E iso . . f : X → Y k (quasi-k-mapping), Y K, f −1 (K) X . 5.5.1 k 5.2.1 . 6.6.3 f : X → Y iso X Y k , Y iso . K Y , f −1 (K) X , , K Y . . f : X → Y Y X , ⇒k ( 3.31), . [36] 6.6.1 iso . 6.6.4 [36] f : X → Y X iso Y ,X iso . M X , f (M ) Y , . k ( 3.30), f −1 (f (M )) . M f −1 (f (M )) , M . . 6.6.5 [293] f : X → Y X iso T1 Y , y ∈ Y, f −1 (y) iso , X iso . M X , f (M ) Y , f (M ) . f M f |M : M → f (M ), f |M . −1 −1 y ∈ f (M ), f |M (y) M , . , f |M (y) f −1 (y) , iso . f |−1 . f (M ) M (y) , f |M , M ( 3.30). X iso . . , (), ( 5.14 5.15). 6.6.6 [36] Iso iso . 6.6.4 3.3.1 . . 6.6.7 [36] iso iso . 6.6.2 . . 6.6.8 {Fα }α∈A T1 X , Fα (α ∈ A) iso , X iso . M T1 X . 5.5.1, M Fα . M ⊂ ni=1 Fαi . 6.6.7, ni=1 Fαi iso . M , X iso . . · 190 · 6 iso 6.6.2 ( 6.6.9 6.6.10). iso . iso 6.6.1, y ∈ Y , f −1 (y) ∂f −1 (y) () . “ ” ( 3.5.6) , 4.4.7 ( 4.4.7 ) . . 6.6.9 [140] iso X Y . K Y . X , f , Y −1 −1 T2 . K Y . f (K) X. f f (K) g = f |f −1 (K) . iso , g iso K . 6.6.2, g . 4.4.8, −1 . C ⊂ f (K) g C h = g|C C K C ( 3.3.3). C ⊂ f −1 (K) ⊂ X, f (C) = g(C) = h(C) = K. . 6.6.9 , 6.2.6 ( meso ( 6.2.4), meso ). meso iso ( 6.6.1), 6.2.6 . 6.6.2 [283] T2 X Y 6.6.3 [140] f X Y {y0 } y0 , f −1 (y0 ) ∩ n∈N f −1 (yn ) . K = f −1 (y0 ) ∩ n∈N f −1 (yn ). , f f . , {yn } Y − , f −1 (yn ) ⊃ {yn : n ∈ N} = {y0 , y1 , y2 , · · · , yn , · · ·}, n∈N K = ∅. . K , {xn } ⊂ K K . {xn : n ∈ N} , {{xn }}n∈N . 2.29 2.30, {Gn }n∈N xn ∈ Gn (n ∈ N). xn ∈ K ⊂ f −1 (y0 ) f −1 (y0 ) ∩ f −1 (yn ) = ∅, n∈N n ∈ N, ni=1 f −1 (yi ) , Gn ( n −1 (yi ) Gn ) i=1 f n Gn ∩ f −1 (yi ) = ∅ i=1 , Gn − (6.6.1). 6.6 Iso m ∈ N, xm ∈ · 191 · n∈N f −1 (y n ), Gm ∩ ( zm ∈ Gm ∩ n∈N f −1 (yn )) = ∅. f −1 (yn ) , n∈N i(m) ∈ N, zm ∈ f −1 (yi(m) ). (6.6.1), i(m) > m (m ∈ N). N {nj } {i(nj )} znj ∈ Gnj ∩ f −1 (yi(nj ) ) (j ∈ N). znj ∈ Gnj (j ∈ N), {{znj } : j ∈ N} , {znj : j ∈ N} . f , , {yi(nj ) : j ∈ N} . {yi(nj ) }j∈N {yn }n∈N y0 . K . . 2 Fréchet ( 2.3.1 ). X Fréchet , A ⊂ X, x ∈ A, A {xn } x; , A ⊂ X, A X A A. , ⇒ Fréchet ⇒ . X, Y . f : X → Y (irreducible[240] ), X F f (F ) = Y . 6.6.10 [140] f iso Y , X ⊂ X f |X X Y . Y y, xy ∈ f −1 (y). X0 = {xy : y Y } ∪ (∪{f −1 (y) : y Y }). (6.6.2) x ∈ / X0 , x ∈ f −1 (y), y Y . f −1 (y) , {xy } , x f −1 (y) − {xy } X0 , X0 . g = f |X0 X0 Y . g , . , X0 U0 g(X0 − U0 ) = Y . Zorn . U = {Uα : Uα X0 , g(X0 − Uα ) = Y }. U “<”Uα < Uα Uα Uα . U ⊂ U, U = {Uα : α < β}, β , U . (i) β , g|X0 −Uβ−1 , X0 U ⊂ X0 − Uβ−1 g((X0 − Uβ−1 ) − U ) = Y . Uβ = Uβ−1 ∪ U , Uβ−1 < Uβ g(X0 − Uβ ) = Y . Uβ U . (ii) β , Uβ = α<β Uα . g(X0 − Uβ ) = Y . , y0 ∈ Y − g(X0 − Uβ ) g −1 (y0 ) ⊂ Uβ , g −1 (y0 ) ⊂ Uα (α < β). (6.6.2) g , y0 Y ( y0 , g −1 (y0 ) = {xy0 }. · 192 · 6 ). {y0 } Y , Y , Y y0 {y0 }, {yn } ⊂ Y − {y0 } {yn } y0 . xy0 ∈ Uβ = α<β Uα ⇒ xy0 ∈ Uα , g(X0 − Uα ) = Y H= g −1 (yn ), K = g −1 (y0 ) ∩ H. n∈N iso , 6.6.3, K , X0 iso K , α < β K ⊂ Uα . K . K ⊂ g −1 (y0 ) ⊂ Uβ , H − Uα . Y T2 , {yn }n∈N ∪ {y0 } , g −1 (y0 ) ∪ H . g −1 (y0 ) ∩ H = ∅, K = g −1 (y0 ) ∩ (H − H). g −1 (y0 ) ∪ H , H ⊂ g −1 (y0 ) ∪ H, H − H ⊂ g −1 (y0 ). K = H − H, H − H ⊂ Uα . g , H − Uα = (H ∪ (H − H)) − Uα = H − Uα . H − Uα . g(H − Uα ) ⊂ {yn : n ∈ N}. {yn } y0 , g(H − Uα ) . m ∈ N, n m , g −1 (yn ) ⊂ Uα . g(X0 − Uα ) = Y . g(X0 − Uβ ) = Y . Uβ U . Zorn , U U . g|X0 −U . X = X0 − U . . . f |X X Y [140] Fréchet , . 1998 , G. Gruenhage[169] f : X → Y , X ⊂ X Lindelöf X , f |X X Y . 6.6.10 Y . 6.6.3 [240] f T2 X Fréchet Y X ⊂ X f |X X Y . , —— . 6.6.2 X U (minimal), U X. X (irreducible[51] ), X . Arens Dugundji[13] iso . 6.6.11 [13] . U = {Uα }α∈A X . U Uα U , Φ. Φ A U ∪ {∅} f (i) f (α) = Uα , f (α) = ∅; 6.6 Iso (ii) · 193 · α∈A f (α) = X. f ∈ Φ. Af = {α : α ∈ A, f (α) = ∅}. Φ “<”f < f Af ⊂ Af . Φ . Φ Φ0 , Φ0 . f0 (α) = f ∈Φ f (α) (α ∈ A). f0 . f0 ∈ Φ0 . f0 (i). x ∈ X, x Uα . Af0 = {α : α ∈ A, f0 (α) = ∅}. / Af0 , f0 (ii), Φ0 . α α ∈ α Af0 , . f ∈ Φ0 α Af , f (ii), f ∈ Φ0 . Zorn , Φ f ∗ . {Uα }α∈A−Af ∗ . . 6.6.4 [13] U = {Uα }α∈A . 6.6.2 6.6.11 . . 1965 , Worrell Wicke[416] θ , . [92, 93] . 1975 , Boone[51] θ ? 1977 , van θ , [107] Douwen Wicke θ , . θ . 1976 , Boone[52] Smith[367] θ . , . 1984 , Mashburn[277] T1 δθ T1 δθ . , . , , . , 1991 [449] T1 . T1 , T1 Lindelöf ( 6.22). [143, 145] . . 1972 , Christian 6.6.12 [51] X , X U = {Uα }α∈A {Fβ }β∈B , B ⊂ A, Fβ ⊂ Uβ (β ∈ B) {Uβ }β∈B X. . U = {Uα }α∈A X . {Vα }α∈B X , B ⊂ A, Vα ⊂ Uα (α ∈ B). β ∈ B, Fβ = X − ∪{Vα : α ∈ B, α = β}, Fβ = ∅. {Fβ }β∈B B ⊂ A, Fβ ⊂ Uβ (β ∈ B) {Uβ : β ∈ B} X. . U = {Uα }α∈A X . , · 194 · 6 {Fβ }β∈B , B ⊂ A, Fβ ⊂ Uβ (β ∈ B) {Uβ }β∈B X. β ∈ B, Vβ = Uβ − ∪{Fα : α ∈ B, α = β}, {Vβ }β∈B X , U . . 6.6.13 (i) ; (ii) ℵ1 ( ) Lindelöf . , ⇒ , Lindelö ⇒ ℵ1 ( 4.1.7 ). , U = {Uα }α∈A X . 6.6.12, {Fβ }β∈B 6.6.12 , (ℵ1 ) (), U () . . 1 (ℵ1 ) X (). , U = {Uα }α∈A (ℵ1 ) X , U (), A (). α ∈ A, xα ∈ Aα . F = ∪{{xα } : α ∈ A}, F ( 3.5.2), F . X (ℵ1 ) , F (), α, β ∈ A , {xα } = {xβ }, U xα (α ∈ A) . U (). 2 [0, ω1 ) , 6.6.13 (i) [0, ω1 ) . [0, ω1 ) ortho , ortho ( 6.6.1 ). 6.6.13 (i) iso ( 6.6.1) . iso , , . 6.6.14 [105] . X X × [0, ω]. X × [0, ω) , ϕ(X). , X ϕ(X) X × {ω}. U ϕ(X) . x ∈ X nx ∈ [0, ω) Ux X Ux × [nx , ω] U . Vx = (Ux × [nx + 1, ω]) ∪ {(x, nx )}. Vx U . n ∈ [0, ω), An = {x ∈ X : nx = n}. W0 = {Vx : x ∈ A0 }; n−1 / Wi∗ Wn = Vx : x ∈ An (x, ω) ∈ i=0 (n ∈ N); 6.6 Iso · 195 · Wω = {p} : p ∈ ϕ(X) − Wn∗ . n<ω ω W = n=0 Wn X , U . ϕ(X) . . 1976 , van Douwen “ ”, . 1979 Davis Smith[105] . (i) . X . X X ×{ω} ϕ(X) . (ii) iso . X iso , ϕ(X) iso . , iso , X iso . . , ( [143] [145]). 1975 , Boone[51] “ ? , Arhangel’skiı̌ MOBI ?” [449] . 6.6.15 [449] X , A ⊂ X, X/A . U X/A . U0 ∈ U A ∈ U0 . U = {U − {A} : U ∈ U } ∪ {U0 }. f X X/A . X/A , X/A {A} . U X/A , U . f −1 (U ) X . f −1 (U ) X V . V1 = {V : V ∈ V , V ∩ A = ∅}, V2 = V − V1 . f |X−A : X − A → X/A − {A} , f (V1 ) U ∗ ∗ ∗ X/A − f (V2 ) . A ⊂ V2 , f (V2 ) X/A A . V ∈ V2 , V ∩A = ∅, V f −1 (U0 ). V2∗ ⊂ f −1 (U0 ), f (V2∗ ) ⊂ U0 . f (V1 ) ∪ {f (V2∗ )} X/A , U . X/A . . 6.6.1 [449] . X , Z = X × {0, 1}. (x, 0) ∈ Z, {Vx × {0} : Vx x X } (x, 0) . (x, 1) ∈ Z, {Vx × {0} ∪ {(x, 1)} : Vx x X } (x, 1) . f : Z → X f ((x, i)) = x (i = 0, 1), f . Z . Z {Vx × {0} ∪ {(x, 1)} : x ∈ X} , . . · 196 · 6 6.6.15 6.6.1, [143] . ( ) ? 1966 , Arhangel’skiı̌[21] MOBI ( (i) (ii) ) ; . 1970 , Bennett[42] “ Y MOBI M φ1 , φ2 , · · · , φn , (φ1 ◦ φ2 ◦ · · · ◦ φn )(M ) = Y ”. [44] θ MOBI . 1990 , Bennett Chaber Boone[51] MOBI . 6.6.16 [145] . Arhangel’skiı̌ MOBI T1 , 7.6.2. , MOBI T1 . 6.1[20] ; k X X meso . 6.2 6.3 6 k X X U [49] ( 6.1.11). . Sorgenfrey , , Fσ , N (A) ( 4.1.2) A [114] . N (A) × (0, 1) A , (0,1) 6.4[45] . R {G(x, n)}n∈N , G(x, n) = {x} ∪ {y : y ; [316] . x |y − x| < 1/n}. X T2 θ θ . 6.5[164] X ortho (pointwise star-orthocompact), X U {Vx }x∈X x ∈ X, x ∈ Vx ⊂ st(x, U ). ortho [218] 6.6 . X ortho (discretely orthocompact), X {Fα }α∈A 6.7 {Uα }α∈A Fα ⊂ Uα , α ∈ A, X {Vα }α∈A Fα ⊂ Vα ⊂ Uα (α ∈ A). ortho [440] . X ortho (locally finitely orthocompact), {Fα }α∈A “” (i) ortho “”. ; (ii) 6 · 197 · ortho ⇒ ortho , ortho ⇒ ortho ⇒ ortho ⇒ ortho ; (iii) [0, ω1 ) × [0, ω1 ] [101] 6.8 ortho ortho . X *Lindelöf (*Lindelöf space), X U V {st(x, U )}x∈X . (i) X *Lindelöf X U {xn }n∈N n∈N st(xn , U ) = X, *Lindelöf Lindelöf ; (ii) *Lindelöf ; (iii) X Lindelöf X *Lindelöf meta-Lindelöf . 6.9[82] 6.10[147] meso [22] Arhangel’skiı̌ “ . . , . [132] X 6.12 . 6.13 () , X Lindelöf Lindelöf . A . α ∈ A, Iα 0 S(A). ρ(x, y) = ?” [48] 6.11 I = [0, 1]. α∈A Iα |x − y|, x, y ∈ Iα , α ∈ A, x + y, x ∈ Iα , y ∈ Iβ , α = β, . S(A) . S(A) 6.14 . 6.15 6.16[132] [336] . T2 [58] . f X Y , y ∈ Y, f −1 (y) , X . 6.17[274] [45] ( 1.2.3) [421] 6.19 iso 6.21[129] θ 6.20 . X X θ . 6.18 . . . iso iso [36] . iso Tychonoff iso [113] . . iso . S(A) (hedgehog space), 1927 Urysohn [114] . , fα : Xα → Yα (α ∈ A). {fα }α∈A f = {fα }α∈A α∈A fα : {fα (xα )} ∈ α∈A Xα → α∈A Yα x = {xα } ∈ α∈A Yα . 7.2.5. α∈A Xα , f (x) = ( α∈A fα )({xα }) = · 198 · 6 6.22[269] T1 , . [13] 6.6.11 iso . [449] . , 6.23 6.24 . 6.25[449] T1 . T1 . 6.26[145] δθ δθ . T1 δθ . 6.27[433] X B (property B), {Fα }α∈A α∈A Fα = ∅, {Gα }α∈A Fα ⊂ Gα (α ∈ A) α∈A Gα = ∅. (i) ⇒ B ⇒ ; (ii) B B; (iii) B T2 ; (iv) B , , ℵ1 Lindelöf . 6.28[426] Lindelöf B. [393] [155] [369] ( 6.1.9) “” “” 6.29 6.30 6.31 Chaber ( 2.21) B Lindelöf . B. b1 (property b1 ). , ⇒ b1 . b1 ⇒ . 6.32[210] [154] 6.33 b1 . Lindelöf B. b1 . 7 () (generalized metric space generalized metrizable space) . 6 () , () , . . . , 4.1 ( 4.1.1) (M1) (ρ(x, y) = 0 x = y) (M1 ) (ρ(x, y) = 0 x = y), . (M3) ( ) , , . , . , Alexandroff-Urysohn ( 4.5.10) , (i), ( 4.4.1). Moore . (i) (ii) M ( 7.2.2). Moore M . Bing-Nagata-Smirnov ( 4.3.6 4.3.7) , . 7.1 Moore , Gδ Alexandroff-Urysohn ( 4.5.10) X X T0 {Un }n∈N (i) Un+1 Un (n ∈ N); (ii) {st(x, Un )}n∈N x ∈ X . {Un }n∈N (ii) ( 4.4.1), {Un }n∈N . Moore (Moore space[299] ). 7.1.1 [60] [416] . [ 6.1.1 (v)], . , F , F = n∈N st(F, Un ) ( 7.2). . · 200 · 7 () 4.5.6 , X × X ∆ = {(x, x) : x ∈ X} X × X . 7.1.1 [80] X Gδ (Gδ -diagonal), X × X ∆ X 2 Gδ . Gδ , . 7.1.2 [80] X Gδ X {Un }n∈N x, y ∈ X, x = y, n ∈ N, y ∈ / st(x, Un ) ( , x ∈ X, {x} = n∈N st(x, Un )). X Gδ ∆ = n∈N Vn , Vn X 2 . x ∈ X n ∈ N, Un (x) x Un (x) × Un (x) ⊂ Vn , Un = {Un (x) : x ∈ X}. {x, y} ⊂ n∈N st(x, Un ), x = y, n ∈ N, zn ∈ X {x, y} ⊂ Un (zn ), (x, y) ∈ Un (zn ) × Un (zn ) ⊂ Vn , (x, y) ∈ n∈N Vn . . {Un }n∈N , Vn = ∪{U × U : U ∈ Un }, ∆ ⊂ n∈N Vn . (x, y) ∈ n∈N Vn , n ∈ N, Un ∈ Un , (x, y) ∈ Un × Un , y ∈ n∈N st(x, Un ) = {x}, y = x. ∆ = n∈N Vn . . 7.1.2 X Gδ (Gδ -diagonal sequence[80] ). , T1 Gδ , Gδ T1 . 7.1.3 [370] Gδ T2 . X , 7.1.2, {Un }n∈N , x ∈ X, n∈N st(x, Un ) = {x}. X , {Vn }n∈N V n = {V : V ∈ Vn } Un , Vn+1 Vn . st(x, V n ) ⊂ st(x, Un ) = {x}. n∈N n∈N B = {X − (V 1 ∪ · · · ∪ V k ) : V1 , · · · , Vk ∈ Vn ; k, n ∈ N}, B , B X . x0 ∈ X x0 U . 3.1.3, n ∈ N, st(x0 , V n ) ⊂ U . Vn X , x ∈ X − U , Vx ∈ Vn x ∈ Vx . x0 ∈ / Vx ( , x ∈ U , ). X − U , Vx1 , · · · , Vxk X − U , X − (V x1 ∪ · · · ∪ V xk ) ∈ B, x0 ∈ X − (V x1 ∪ · · · ∪ V xk ) ⊂ U. B X , Urysohn ( 4.3.1) . . 7.1 Moore , Gδ · 201 · 7.1.4 (Bing [46] ) . 4.4.6 Nagata-Smirnov ( 4.3.6) T2 . 7.1.1 6.1.8 . . Bing[46] 1937 Jones[215] Moore ( Moore ) . ZFC (Zermelo-Fraenkel + ) . . 7.1.2 [41] X (quasi-developable space), {Un }n∈N , x ∈ X x U , n ∈ N x ∈ st(x, Un ) ⊂ U . X (quasi-development). 7.1.5 [43] X X . 7.1.2 7.1.1. . X Un∗ = ∪{U : U ∈ Un }, . {Un }n∈N 7.1.2, Un∗ , X , Un∗ = m∈N Fn,m , Fn,m . Vn,m = Un ∪ {X − Fn,m } (n, m ∈ N). , Vn,m . {Vn,m }n,m∈N X . x ∈ X x U , n ∈ N x ∈ st(x, Un ) ⊂ U , x ∈ Un∗ = m∈N Fn,m , x ∈ Fn,m ⇒ x ∈ / X − Fn,m , n, m ∈ N st(x, Vn,m ) = st(x, Un ) ⊂ U . . 7.1.6 [45] θ . , , θ . {Gn }n∈N X . U X , U , U = {Uα : α < Λ}, Λ . α < Λ, n ∈ N, P (α, n) = {x ∈ X : x ∈ Uα − ∪{Uβ : β < α} x ∈ st(x, Gn ) ⊂ Uα }, Pn = {P (α, n) : α < Λ}, P = ∪{Pn : n ∈ N} X U . X ∪Pn . x ∈ ∪Pn , α x ∈ P (α, n), st(x, Gn ) x Pn ( P (α, n)) , Pn ∪Pn , 6.1.5 (iii) X θ . . 7.1.3 [416] X θ (θ-base) B, B X , B = ∪{Bn : n ∈ N} X U x ∈ U , nx ∈ N ord(x, Bnx ) < ∞ B ∈ Bnx x ∈ B ⊂ U . , θ θ , θ ( 6.4 7.4 Bennett Lutzer ). · 202 · 7 () 7.1.7 [45] X X θ . X , {Gn }n∈N X . 7.1.6, X θ , X ∪Gn (n ∈ N) θ , Gn ( ∪Gn ) θ {Bn,m }m∈N , Bn,m X . {Bn,m }n,m∈N X θ . X U x ∈ U , {Gn }n∈N X , n ∈ N x ∈ st(x, Gn ) ⊂ U . {Bn,m }m∈N Gn θ , m ∈ N 1 ord(x, Bn,m ) < ∞, st(x, Bn,m ) ⊂ st(x, Gn ) ⊂ U . {Bn,m }n,m∈N X θ . X θ B = ∪{Bn : n ∈ N}. n, k ∈ N, X(n, k) = {x ∈ X : ord(x, Bn ) = k}, G(x, n, k) = ∩{B ∈ Bn : x ∈ B}, x ∈ X(n, k), Gn,k = {G(x, n, k) : x ∈ X(n, k)}, Gn,k G(x, n, k) x . {Gn,k }n,k∈N X . X U x ∈ U , B θ , n ∈ N ord(x, Bn ) < ∞, B ∈ Bn x ∈ B ⊂ U , ord(x, Bn ) = k, x ∈ X(n, k). , Gn,k G(x, n, k) x, st(x, Gn,k ) = G(x, n, k) ⊂ B ⊂ U , {Gn,k }n,k∈N X . . 7.1.5 . 7.1.1 [416] X X θ . 7.2 w∆ M p w∆ . 7.2.1 [55] X w∆ (w∆-space), X {Un }n∈N x ∈ X, xn ∈ st(x, Un ) (n ∈ N), {xn } . {Un }n∈N w∆ (w∆-sequence). x, x, {st(x, Un )}n∈N x ( 7.5). ( 4.4.1), w∆ . , w∆ . Morita[305] M . 7.2.2 [305] X M (M-space), X {Un }n∈N (i) Un+1 Un (n ∈ N); (ii) x ∈ X, xn ∈ st(x, Un ) (n ∈ N), {xn } . 7.2 w∆ M p · 203 · {Un }n∈N M (M-sequence). M ( Un = {X}). (ii) w∆ ( 7.2.1), M w∆ . M AlexandroffUrysohn , w∆ . M w∆ [198] (generalized countably compact space ). 7.2.1 (Frink [126] ) d : X × X → R+ ( ) ε > 0, d(x, y) < ε, d(y, z) < ε, d(x, z) < 2ε. (7.2.1) ρ : X × X → R+ x, y, z ∈ X, (i) ρ(x, z) ρ(x, y) + ρ(y, z); (ii) d(x, y)/4 ρ(x, y) d(x, y). d ( d(x, y) = d(y, x)), ρ . ρ ρ(a, b) = inf n−1 d(xi , xi+1 ) : n ∈ N, xi ∈ X, x0 = a, xn = b . i=0 , ρ (i) ρ(x, y) d(x, y). , a, b, x1 , · · · , xn ∈ X, (7.2.2) d(a, b) 2d(a, x1 ) + 4 n−1 d(xi , xi+1 ) + 2d(xn , b). (7.2.2) i=1 n=1 , max{d(a, x1 ), d(x1 , b)} = ε. (7.2.1), d(a, b) 2d(a, x1 ) d(a, b) 2d(x1 , b), (7.2.2) . . (7.2.2) n . a, b, x1 , · · · , xn ∈ X, (7.2.1) xi d(a, b) 2d(a, xi ) d(a, b) 2d(xi , b). k d(a, b) 2d(a, xk ). k = 1 , (7.2.2) . k > 1 , d(a, b) 2d(a, xk−1 ), d(a, b) 2d(xk−1 , b), d(a, b) d(a, xk ) + d(xk−1 , b). d(a, xk ) d(xk−1 , b), (7.2.2) . . 7.2.2 [69] X {Un }n∈N Un+1 Un (n ∈ N), X ρ · 204 · 7 (i) ρ(x, y) = 0 y ∈ () n∈N st(x, Un ); (ii) U ρ x ∈ U n ∈ N st(x, Un ) ⊂ U . X d : X × X → R+ , 0, y ∈ n∈N st(x, Un ), d(x, y) = 1/2n, n = min{i ∈ N : y ∈ / st(x, Ui )}. d(x, y) < 1/2n+1 , d(y, z) < 1/2n+1 , y ∈ st(x, Un+1 ), z ∈ st(y, Un+1 ). z ∈ st(st(x, Un+1 ), Un+1 ) ⊂ st(x, Un ), d(x, z) < 1/2n , d 7.2.1 (7.2.1). X ρ, d 7.2.1 (ii) (i). , 7.2.1 (ii), x ∈ X, st(x, Un+2 ) = S1/2 n+2 (x) ⊂ S1/2n+2 (x) ⊂ S1/2n (x) = st(x, Un ), (7.2.3) Sε (x) = {y ∈ X : ρ(x, y) < ε}, Sε (x) = {y ∈ X : d(x, y) < ε}. , ρ {st(x, Un )}n∈N x . (ii). . 7.2.3 {Un }n∈N X M , x ∈ X, C = n∈N st(x, Un ), C X , {st(x, Un )}n∈N C X ( U ⊃ C, n ∈ N U ⊃ st(x, Un )). st(x, Un+1 ) ⊂ st(st(x, Un+1 ), Un+1 ) ⊂ st(x, Un ), st(x, Un+1 ) ⊂ st(x, Un ), C = n∈N st(x, Un ) = n∈N st(x, Un ) X . 7.2.2 (ii), C . 3.5.2, C . , V ⊃ C xn ∈ st(x, Un ) − V (n ∈ N). {xn } x , x ∈ st(x, Un )(n ∈ N), x ∈ n∈N st(x, Un ) = n∈N st(x, Un ) ⊂ V , . {xn } , M . . , 7.2.2 ρ , n∈N st(x, Un ) . R n∈N st(x, Un ) [x], Y . , 7.2.3 Alexandroff-Urysohn (ii), n∈N st(x, Un ) . 7.2.1 (Morita [305] ) X M Y X Y f . X M , {Un }n∈N M . 7.2.2 X ρ (i) ρ(x, y) = 0 y ∈ n∈N st(x, Un ); 7.2 w∆ M p · 205 · (ii) U ρ x ∈ U n ∈ N, st(x, Un ) ⊂ U . X R xRy ρ(x, y) = 0. Y = X/R f : X → Y , ρ : Y × Y → R+ , ρ ([x], [y]) = ρ(x, y), [x] x Y . , ρ ρ Y . Y TR T . X T . x ∈ X ε > 0, Sε (x) = {y ∈ X : ρ(x, y) < ε}, Sε ([x]) = {[y] ∈ Y : ρ ([x], [y]) < ε}, f −1 (Sε ([x])) = Sε (x) ∈ T , Sε ([x]) ∈ TR , T ⊂ TR . V ∈ TR , f −1 (V ) ∈ T , [x] ∈ V , X [x] ⊂ f −1 (V ), (i) 7.2.3, [x] = n∈N st(x, Un ) (X, T ) , n ∈ N st(x, Un ) ⊂ S1/2 f −1 (V ), S1/2n+2 (x) ⊂ f −1 (V ) [ 7.2.2 (7.2.3) ], n+2 ([x]) ⊂ V , V ∈ T . TR = T . f : X → Y . [x] ∈ Y , f −1 ([x]) = {y ∈ X : ρ(x, y) = 0} = [x] . f . H ⊂ X , f , −1 −1 −1 f (f (H)) . x ∈ / f (f (H)), f (f (x)) ∩ H = ∅, n∈N st(x, Un ) ∩ H = ∅. 7.2.3, m ∈ N st(x, Um ) ∩ H = ∅. st(x, Um+1 ) ∩ −1 −1 f (f (H)) = ∅, f (f (H)) . x ∈ st(x, Um+1 ), st(x , Um+1 ) ⊂ st(st(x, Um+1 ), Um+1 ) ⊂ st(x, Um ), st(x , Um+1 )∩H = ∅. n∈N st(x , Un ) x ∈ / f −1 (f (H)). st(x, Um+1 ) ∩ ∩ H = ∅, f −1 (f (x )) ∩ H = ∅. f −1 (f (H)) = ∅. f . , f X Y . Alexandroff-Urysohn , Y {Un }n∈N , Un+1 Un (n ∈ N). Gn = −1 {f (U ) : U ∈ Un }, Gn+1 Gn . x ∈ X, xn ∈ st(x, Gn )(n ∈ N), {xn } , X M . xn ∈ st(x, Gn ) f (xn ) ∈ st(f (x), Un ), {Un }n∈N Y , Y f (xn ) → f (x). C = {f (x)} ∪ {f (xn ) : n ∈ N}, C Y , , f , f −1 (C) X ( , 3.31, 5.6.6 ). xn ∈ f −1 (C) (n ∈ N), {xn } . X M . . 7.2.1 X iso M Y X Y . · 206 · 7 () iso ( 6.6.1), iso ( 6.6.4), 7.2.1 . . 7.2.1 . 7.2.2 [305] Y . X M Y X iso ( 5.2.4). , iso M . . 7.2.1 7.2.2 M M M . 7.2.2, , 7.2.2 7.2.1 . 7.2.4 [127] {Xs }s∈S , As Xs , W s∈S Xs , W ⊃ s∈S As , Us ⊂ Xs , Us = Xs s , s∈S As ⊂ s∈S Us ⊂ W . 3.32 . A= As ⊂ W ⊂ s∈S Xs , s∈S A s∈S Xs . a ∈ A, s∈S Ws a ∈ s∈S Ws ⊂ W ( Ws s, Ws = Xs ). A , A . Ws1 ∪ A⊂ s∈S Ws2 ∪ · · · ∪ s∈S Wsk ⊂ W. s∈S S0 = {s1 , s2 , · · · , sl } ⊂ S Wsi = Xs (i = 1, 2, · · · , k) s ∈ S − S0 . k Wsi , W1 = i=1 W2 = s∈S0 Xs , s∈S−S0 As × s∈S0 As ⊂ W1 × W2 ⊂ W. s∈S−S0 3.32 (), Us ⊂ Xs (s ∈ S0 ) As ⊂ s∈S0 s ∈ S − S0 , Us = Xs , Us ⊂ W1 . s∈S0 s∈S As = s∈S Us ⊂ W . . 7.2 w∆ M p · 207 · {Xs }s∈S , {Ys }s∈S {fs }s∈S fs : Xs → Ys . f : s∈S Xs → s∈S Ys {fs }s∈S (product of mapping family, f = s∈S fs ), f s∈S Xs {xs }s∈S s∈S Ys {fs (xs )}s∈S . 7.2.5 [127] {fs }s∈S f = s∈S fs . fs : Xs → Ys (s ∈ S) . y = {ys }s∈S ∈ −1 (y) = s∈S fs−1 (ys ) . , s∈S Ys , f f . f . y = {ys }s∈S ∈ s∈S Ys s∈S Xs U ⊃ f −1 (y) = fs−1 (ys ), s∈S 7.2.4, Us ⊂ Xs Us = Xs S S0 s , U ⊃ s∈S Us ⊃ s∈S fs−1 (ys ). S0 = {s1 , s2 , · · · , sk }. i k, fsi , Usi ⊃ fs−1 (ysi ), 1.5.1, Us i i Usi ⊃ Us i ⊃ fs−1 (ysi ), i Us i = fs−1 (fsi (Us i )) fsi (Us i ) Ysi . i s∈S Us ⊃ s∈S Us ⊃ s∈S fs−1 (ys ), s ∈ S − S0 Us = Xs , U = s∈S Us , U , U ⊃ U ⊃ f −1 (y), 1.5.1 , f 7.2.2 M . [305] . U = f −1 (f (U )) f (U ) Y. . {Xi}i∈N M , i∈N Xi Xi (i ∈ N), 7.2.2, Yi Xi Yi , i∈N Yi fi . 7.2.5, i∈N fi : i∈N Xi → i∈N Yi ( 4.1.10), 7.2.2 . . ( 2.3.3 2.3.4), Isiwata[203] M M , 7.2.2 . . P ( ), P . . P 1960 , Frolı́k[127] P Čech (Čech-complete space ). X Čech , X Stone-Čech βX Gδ . Čech ( 7.9). 1963 , [79] · 208 · 7 Arhangel’skiı̌[18] Frolı́k () , P p , p ( 7.2.3). 7.2.3 [18] X p (p-space), βX {Un }n∈N (i) Un X; (ii) x ∈ X, n∈N st(x, Un ) ⊂ X; (iii) n∈N st(x, Un ) = n∈N st(x, Un ), X p (strict p-space). T2 X Stone-Čech βX ( 3.6.1), , T2 Čech , Čech p , Čech X = n∈N Un , Un βX, 7.2.3 Un {Un }. 1 7.2.3 Stone-Čech βX αX , {Un }n∈N 7.2.3 αX , 3.6.4, f : βX → αX, f |X . f −1 (Un ) = {f −1 (U ) : U ∈ Un } 7.2.3 βX . 7.2.3 . 2 “U ∧ V ” Un+1 Un (n ∈ N), U1 ∧ · · · ∧ Un Un ( U , V , U ∧ V = {U ∩ V : U ∈ U , V ∈ V }). 7.2.3 [18] {Xi }i∈N p , i∈N Xi p . Xi , {Ui,j }j∈N βXi , 7.2.3 (i), (ii). i∈N Xi i∈N βXi U1 = U1 × βXi : U1 ∈ U1,1 , i>1 U2 = U1 × U2 × βXi : U1 ∈ U1,2 , U2 ∈ U2,2 , i>2 Un = ······ in βXi : Ui ∈ Ui,n , i n . Ui × i>n 1, {Un }n∈N 7.2.3 (i), (ii). 7.2.4 . p . [77] 7.2.4 X p X {Gn }n∈N (i) x ∈ X, Px = n∈N st(x, Gn ) ; (ii) {st(x, Gn )}n∈N Px . 7.2 w∆ M p · 209 · X p , βX {Un }n∈N 7.2.3 (i)∼(iii), 2, Un+1 Un (n ∈ N). st(x, Un ) = st(x, Un ) Px = n∈N n∈N βX X , Px X , Gn = {U ∩ X : U ∈ Un }, , Px = n∈N st(x, Gn ). {st(x, Gn )}n∈N Px . X U ⊃ Px , xn ∈ st(x, Gn ) − U (n ∈ N), {xn } βX , x , x ∈ n∈N st(x, Un ) = Px ⊂ U , xn ∈ U , {st(x, Gn )}n∈N Px . . n ∈ N st(x, Gn ) ⊂ U , , {Gn }n∈N X , (i) (ii), Un = {U : U βX U ∩ X ∈ Gn }, {Un }n∈N βX . , {Un }n∈N 7.2.3 (i). p . 7.2.3 (ii), (iii), X Px = n∈N st(x, Gn ) , βX . y ∈ βX − X, Px ⊂ X, βX − {y} Px . βX , βX O Px ⊂ O ⊂ O ⊂ βX − {y}, (7.2.4) O O βX . (7.2.4), Px ⊂ O ∩ X. , (ii), m ∈ N, O ∩ X X Px ⊂ st(x, Gm ) ⊂ O ∩ X ⊂ O ∩ X, st(x, Gm ) = st(x, Um ) ∩ X, st(x, Um ) ∩ X ⊂ O ∩ X. st(x, Um ) X O , st(x, Um ) − O ⊂ βX − X. st(x, Um ) − O βX , βX X , st(x, Um ) − O = ∅. st(x, Um ) ⊂ O ⊂ βX − {y} ( (7.2.4)). y βX − X , n∈N st(x, Un ) ⊂ X, 7.2.3 (ii). , n ∈ N, (7.2.4) , βX O m ∈ N Px ⊂ st(x, Um ) ⊂ O ⊂ O ⊂ st(x, Un ), st(x, Um ) ⊂ st(x, Un ). (iii). . n∈N st(x, Un ) = (7.2.5) n∈N st(x, Un ), 7.2.3 · 210 · 7 () 7.2.3 (a) p [77] . (b) p w∆ [62] . (a) T1 , Px = {x}, 7.2.4 (i), (ii). (b) x, xn ∈ st(x, Gn ), Gn+1 Gn (n ∈ N) ( 7.2.3 n 2), k=1 st(x, Gn ) = st(x, Gn ) ⊃ {xn , xn+1 , · · ·}, Px = n∈N st(x, Gn ) , {xn } Px . . 7.2.6 [236] X , Y ⊂ X θ , {Un }n∈N X , Un Y . X {Vn }n∈N , Vn Y y ∈ Y , n∈N st(y, Vn ) = n∈N st(y, Vn ) ⊂ st(y, Un ). n∈N U X , U |Y = {U ∩ Y : U ∈ U }. Y θ X , m ∈ N, X {Vm,n }n∈N , Vm,n Y (i), (ii). U1 Y θ {V1,n |Y }n∈N (V1,n X Y ), V1,n (n ∈ N) U1 . U2 ∧ V1,1 Y θ {V2,n |Y }n∈N (V2,n X Y ), V2,n (n ∈ N) V1,1 U1 , U2 . U3 ∧ ( i,j<3 Vi,j ) Y θ {V3,n |Y }n∈N (V3,n X Y ), V3,n (n ∈ N) Vi,j (i, j < 3) Uk (k 3) . , (i) {Vm,n |Y }n∈N Vi,j |Y (i, j < m) Uk |Y (k m) θ ; (ii) V ∈ Vm,n , W ∈ Vi,j (i, j < m) V ⊂ W Uk ∈ Uk (k m) V ⊂ Uk . x ∈ i,j∈N st(y, Vi,j ), y ∈ Y , i, j, m > max{i, j}, n ∈ N y Vm,n , st(y, Vm,n ) = ∪{V : y ∈ V ∈ Vm,n }, (ii), ∪{V : y ∈ V ∈ Vm,n } ⊂ ∪{W : y ∈ W ∈ Vi,j } = st(y, Vi,j ). x ∈ i,j∈N st(y, Vi,j ) ⇒ x ∈ st(y, Vm,n ) ⊂ st(y, Vi,j ), i, j ∈ N, x ∈ st(y, Vi,j ), x ∈ i,j∈N st(y, Vi,j ). i,j∈N st(y, Vi,j ) = i,j∈N st(y, Vi,j ). (ii), i,j∈N st(y, Vi,j ) ⊂ n∈N st(y, Un ), {Vi,j }i,j∈N {Vn }n∈N , . . 7.2.5 [62] θ X, 7.2 w∆ M p (i) X · 211 · p ; (ii) X p ; (iii) X w∆ . (ii) ⇒ (i) (iii) ⇒ (i). (ii) ⇒ (i). X θ p , {Un }n∈N 7.2.3 (i), (ii). 7.2.6 X {Vn }n∈N x ∈ X, n∈N st(x, Vn ) = n∈N st(x, Vn ) ⊂ n∈N st(x, Un ), {Vn }n∈N 7.2.3 (i)∼(iii), X p . (iii) ⇒ (i). {Un }n∈N θ X w∆ , 7.2.6 {Vn }n∈N , 7.2.3 Px = n∈N st(x, Vn ) , {Vn }n∈N 7.2.4 (ii), Px , 7.2.4 (i), X 7.2.4 θ iso ( 6.6.1), p . . (i) X p ; (ii) X T2 w∆ ; (iii) X T2 M . (ii) ⇒ (iii), 7.2.5. {Un }n∈N T2 w∆ X w∆ , X , X {Vn }n∈N Vn+1 Vn ∧ Un (n ∈ N), {Vn }n∈N X M . . 7.2.2 . [18] 7.2.5 T2 X p X . 7.2.2 . 7.2.6 [18] . {Xi }i∈N p , i∈N Xi p 7.2.5 θ p p . p θ ? p (strict p-space problem), Chaber Junnila[88] , Burke[63] 1972 . p ( 7.2.6). , , [236] Kullman “ X X θ p Gδ ” Worrell ( [66] 1 [104] 1.8) “ θ p ”, 7.2.7 7.2.8. . , [104]. , Davis , [213] . 20 25 , · 212 · 7 () ( [168], [222] [71]). , , . 7.2.7 ( [213] ) p θ . 7.2.5, . 7.2.6 X p X θ p . Kullman[236] , . 7.2.7 Gδ . X X p Worrell , . 7.2.8 M p p . , p M [306] [306] [200, 306] [381] [18] [84] θ [66] θ M p , . Neimytzki ( 2.2.3) p , M . M p [166] 3.23. , T2 ( 7.2.4). ( 7.2.2 7.2.6). P . P . Morita P M , Arhangel’skiı̌ P p . p , M . , ( ) . 7.3 (σ Σ ), . 7.3 σ Σ 7.1 7.2 Alexandroff-Urysohn . Bing-Nagata-Smirnov . , . , 7.3 σ Σ · 213 · Bing-Nagata-Smirnov ( 4.3.6 4.3.7) X X (i) σ ; (ii) σ . 3.1 ( 3.1.2). X A , U x ∈ U , A ∈ A x ∈ A ⊂ U . A σ σ σ , X σ σ . 7.3.1 [324] . σ X σ (σ-space), X σ Nagata-Smirnov “” “ ”. , . X , , (closed network). σ Fσ , . ( 6.1.1), 7.3.1 σ [60] , [324] . M p , σ . 7.3.2 [324] , 7.3.3 σ σ ( σ ). ( 7.14). [324] σ σ . X = n∈N Xn , Xn (n ∈ N) σ , σ n n m∈N Am , Am . , n, m ∈ N, n Amn ⊂ Am+1 , n An = Ai × Xi : Ai ∈ Ani , i n . i=1 i>n , An X , X σ . . 7.3.4 [324] , n∈N An X σ , σ σ . ( 7.14). ( 4.1.10), 7.3.2 7.3.3 , 7.3.4 , 4.1.4, . 7.3.1 σ . σ , 7.3.4 σ . . . · 214 · 7 () 7.3.5 (Siwiec-Nagata [362] ) X, (i) X σ ; (ii) X σ ( X σ (iii) X σ ); . (iii) ⇒ (ii) ⇒ (i), (i) ⇒ (iii). A = n∈N An X , An , X , A X , An . An = {Aα : α ∈ Γn }, Fα,m = ∪{A ∈ Am : A ∩ Aα = ∅} (α ∈ Γn ; m ∈ N). Fα,m . {Aα , Fα,m } Hn,m = Hn,m H (7.3.1) , , {{Aα , Fα,m } : α ∈ Γn }. H(Γ ) = (∩{Aα : α ∈ Γ }) ∩ (∩{Fα,m : α ∈ Γn − Γ }), Γ ⊂ Γn . , Hn,m , Hn,m , ( 5.6). (7.3.2) Hn,m {Γλ : λ ∈ Λ}, Γλ ⊂ Γn . x ∈ / ∪{H(Γλ ) : λ ∈ Λ}, λ ∈ Λ, x∈ / H(Γλ ). (7.3.2), x ∈ / ∩{Aα : α ∈ Γλ } x ∈ / ∩{Fα,m : α ∈ Γn − Γλ }. x ∈ / Aαλ , αλ ∈ Γλ ; x ∈ / Fαµ ,m , αµ ∈ Γn − Γλ . Λ = {λ ∈ Λ : x ∈ / ∩{Aα : α ∈ Γλ }}, Λ = {λ ∈ Λ : x ∈ / ∩{Fα,m : α ∈ Γn − Γλ }}. , Λ ∪ Λ = Λ, F1 = Aαλ , λ∈Λ F2 = Fαµ ,m , µ∈Λ F1 , F2 , V = X − (F1 ∪ F2 ), V x ∪{H(Γλ ) : λ ∈ Λ} , ∪{H(Γλ ) : λ ∈ Λ} . Hn,m , . H = n,m∈N Hn,m . x ∈ X x U , A , n ∈ N, α0 ∈ Γn x ∈ Aα0 ⊂ U . Γ = {α ∈ Γn : x ∈ Aα }, x ∈ ∩{Aα : α ∈ Γ } ⊂ Aα0 ⊂ U. (7.3.3) 7.3 σ Σ · 215 · ∪{A ∈ An : x ∈ / A} = ∪{Aα : α ∈ Γn − Γ } x , X − ∪{Aα : α ∈ Γn − Γ } x . A , m ∈ N, α1 ∈ Γm x ∈ Aα1 ⊂ X − ∪{Aα : α ∈ Γn − Γ }. Aα1 ∩ (∪{Aα : α ∈ Γn − Γ }) = ∅. (7.3.1), Aα1 ⊂ Fα,m α ∈ Γn − Γ . x ∈ Aα1 ⊂ ∩{Fα,m : α ∈ Γn − Γ }. (7.3.3) x ∈ (∩{Aα : α ∈ Γ }) ∩ (∩{Fα,m : α ∈ Γn − Γ }) ⊂ Aα0 ⊂ U. (7.3.2), x ∈ H(Γ ) ⊂ U . H X . . 7.3.5 , σ σ , σ . 7.3.2 [362] f σ X Y . X Y , Y σ . X , X σ A, f , f (A ) Y σ , 7.3.5 , Y σ . Y , A X σ , f , f (A ) Y σ , Y , 7.3.5, Y σ . . T2 σ T2 σ ( 7.3.6). . [324] 7.3.1 X, Y T2 σ , X × Y T2 σ , . 7.3.5, n∈N Vn σ X σ , Vn = {Vβ }β∈Bn . U = {Uα }α∈A X × Y . n ∈ N, β ∈ Bn , P (n, β, α) = ∪{P : P Y Vβ × P ⊂ Uα } (α ∈ A), P (n, β) = ∪{P (n, β, α) : α ∈ A}. {P (n, β, α)}α∈A P (n, β) . T2 σ Y , ( 5.3.1), P (n, β) Y Fσ , . Y ( 5.3.1 ) {Hα }α∈A P (n, β) {P (n, β, α)}α∈A . {Vβ }β∈Bn X , {Vβ × Hα }β∈Bn ,α∈A X × Y . H = {Vβ × Hα }β∈Bn ,n∈N,α∈A , H X × Y . · 216 · 7 () (x, y) ∈ X × Y , α ∈ A (x, y) ∈ Uα , X, Y V, U (x, y) ∈ V × U ⊂ Uα , n ∈ N, β ∈ Bn x ∈ Vβ ⊂ V , (x, y) ∈ Vβ × U ⊂ Uα , U ⊂ P (n, β, α), (x, y) ∈ Vβ × P (n, β, α) ⊂ Vβ × P (n, β), {Hα }α∈A P (n, β), α ∈ A (x, y) ∈ Vβ × Hα ∈ H , H X × Y . n ∈ N, Vn = {Vβ }β∈Bn . 5.1.2, X , {Wβ }β∈Bn β ∈ Bn , Wβ ⊃ Vβ . {Wβ × Hα }β∈Bn ,α∈A X × Y . W = {(Wβ × Hα ) ∩ Uα }β∈Bn ,n∈N,α∈A , W X × Y σ , {Uα }α∈A , X × Y ( 5.1.1). σ σ σ ( 7.3.3), X × Y T2 σ , . . K. Morita ( [324]). 7.3.2 n ∈ N, X1 ×· · ·×Xn T2 σ , X = ∞ i=1 Xi T2 σ . X σ ( 7.3.3), X . V X , n∈N Vn Vn in Vi × i>n Xi , Vi Xi . n ∈ N, X Vn in Xi Vn in Xi Gn . in Xi , Gn , Gn Wn Vn . Wn = Wn × Xi : Wn ∈ Wn , i>n , Gn × i>n Xi X , X ( 5.3.1 ). Fσ . W = n∈N Wn X σ , n∈N Vn , X ( 5.1.1). . 7.3.6 [324] {Xi }i∈N T2 σ , i∈N Xi T2 σ . 7.3.1 , n ∈ N, X1 × · · · × Xn T2 σ , . 7.3.2 i∈N Xi T2 σ . M 7.2.2 p 7.2.6 7.3.6 . σ M p . , M p , , σ . Wn Gn × i>n Xi 7.3 σ Σ · 217 · Z 3.1.2 Alexandroff , Y Z C1 , f : Z → Y , f . Y , Y σ . Z T2 , Z σ ( 7.3.13). σ M “ ” ( M p ), “”, Nagami[312] M σ , σ M . , Alexandroff σ , M σ ; 7.4 7.4.1 Michael , σ M ( 7.3.13). σ . σ ( 7.3.2) . σ 7.3.7 {Fα }α∈A X , Fα (α ∈ A) σ , X σ . 5.5.5 P σ 7.3.2 5.5.5 . . , 7.3.5 . 7.3.2 F X , X F (dominated[302] ), X K F ⊂ F , F K, F ∈ F , F ∩ K . X F = {Fα }α∈A , Fα (α ∈ A) P, X P, P (dominated closed sum theorem[357] ). , X () . Okuyama[326] , σ . Burke Lutzer “” , 1991 [253] . Okuyama , , , . [74] 7.3.8 [253] X {Fα }α∈A , Fα (α ∈ A) σ , X σ . , 7.1.3), “” “”. 7.3.3 [81] Šneider ( Gδ . X , {Gn }n∈N X Gδ . X , X U . x0 ∈ X, n0 ∈ N, U X − st(x0 , Gn0 ). , n ∈ N · 218 · 7 Un ⊂ U X − st(x0 , Gn ), (X − st(x0 , Gn )) = X − n∈N () st(x0 , Gn ) = X − {x0 }, n∈N n∈N Un X − {x0 } , U X. α ∈ ω1 , xα ∈ X nα ∈ N, (i) xα ∈ / β<α st(xβ , Gnβ ); (ii) U X − βα st(xβ , Gnβ ). , , α , γ < α, U X− βγ st(xβ , Gnβ ), U X− β<α st(xβ , Gnβ ). , {st(xβ , Gnβ ) : β < α} ∪ U X ( X ), st(xβ , Gnβ ) ( U X). st(xβ , Gnβ ) β γ, U X − βγ st(xβ , Gnβ ), . xα ∈ X − β<α st(xβ , Gnβ ) . , n ∈ N A ⊂ ω1 β ∈ A nβ = n, (i) Gn G {xβ : β ∈ A} , {xβ : β ∈ A} ω , X ( 3.5.2). X . . 7.3.9 (Chaber [81] ) Gδ T2 . 7.1.3 7.3.3 . . Gδ 7.1.2, Gδ G∗δ . 7.3.3 X G∗δ (G∗δ -diagonal[196] ), X {Un }n∈N x, y ∈ X, x = y, n ∈ N y ∈ / st(x, Un ) ( , x ∈ X, {x} = n∈N st(x, Un )). G∗δ (G∗δ -diagonal sequence). , G∗δ T2 . 7.2.6 Gδ θ G∗δ . , Gδ T2 , σ G∗δ [260] . 7.3.10 [196] G∗δ w∆ . {Hi }i∈N , {Ki }i∈N X w∆ G∗δ . n Gn = G : G = (Hi ∩ Ki ), Hi ∈ Hi , Ki ∈ Ki , i n (n ∈ N), i=1 {Gn }n∈N w∆ G∗δ , Gn+1 Gn (n ∈ N). 7.3 σ Σ · 219 · x ∈ X xn ∈ st(x, Gn ) (n ∈ N), {xn } p, {st(x, Gn )}n∈N , p ∈ n∈N st(x, Gn ). {Gn }n∈N G∗δ , n∈N st(x, Gn ) = {x}, p = x, X ( 7.5 7.2.1 ). . Gδ w∆ ?[196] w∆ (w∆-space problem). 1988 , Alster, Burke Davis[10] CH . 7.3.9 M . 7.3.11 [74] X X T2 , M Gδ . , . X T2 , M Gδ , 7.2.1, Y X Y f . y ∈ Y, f −1 (y) , Gδ , 7.3.3, f −1 (y) . f , 7.2.2, X . X T2 , X , 7.3.3 , X G∗δ . 7.3.10, X . X ( 7.1.4). . 7.3.12 σ [77] , σ G∗δ . X , {Gn }n∈N . , Gn σ Fn , F = n∈N Fn X σ , X σ . σ σ , , Gδ (T2 , 2.7). σ , G∗δ ( 7.3.3 ). . 7.3.4 [353] σ . X σ , ( 6.6.13 1), X , X Lindelöf , X . . 7.3.13 [353] X X T2 , M σ . . X T2 , M σ , 7.3.4 7.2.1 7.2.2, X , X . 7.3.11 7.3.12 . . 7.3.13, T2 σ . , Gδ X , T1 σ . , ( 2.3.1), X T2 , , X T1 , X Gδ ( 7.34). M σ “ ” , , “ ”. · 220 · 7 () M ( 7.2.2), , σ ( 7.3.6), σ M ( p ) “”, . Frolı́k[127] “ P , P f f −1 ({P}) ”. σ , f −1 ({σ})[312] , f −1 ({σ}) ; σ , , −1 f ({σ}) . M ( p ) , σ , M ( p ) f −1 ({σ}) , P f −1 ({σ}) , P Frolı́k, Morita, Arhangel’skiı̌, Okuyama . Nagami[312] ( 7.16). 7.3.4 [312] X Σ (Σ-space) ( Σ (strong Σ-space)), σ F () C X U C C ⊂ U , F ∈ F C ⊂ F ⊂ U . 7.3.4, σ Σ , f Σ . Σ f −1 ({σ}) . , Nagami[312] Σ σ , f −1 ({σ}) . Σ , σ Σ , iso ( 6.6.1) iso Σ Σ . , 7.3.14 [59] T2 X Σ X Σ . , iso ( 6.6.1). T2 Σ , . F = n∈N Fn Σ X σ , C X () , 7.3.4. U X , x ∈ X, Cx ∈ C x ∈ Cx . 6.2.11 6.2.1, X Ox , Cx ⊂ Ox U |Ox = {U ∩ Ox : U ∈ U } Ox Hx , Fx ∈ F , Cx ⊂ Fx ⊂ Ox . H = {Fx ∩ H : x ∈ X, H ∈ Hx }. H U σ . x ∈ X H ∈ Hx , z ∈ X − (Fx ∩ H), X − Fx , z ∈ X − Fx , Lz = Ox − H, z ∈ Fx − H. Lx z Lz ∩ Fx ∩ H = ∅, Fx ∩ H X . U σ . X . . 7.3 σ Σ · 221 · 7.3.15 [312] Σ ( Σ ) Σ ( Σ ). , . 7.3.5 [324] f : X → Y X Y , {Uα }α∈A X , {f (Uα )}α∈A Y . {Uα }α∈A X , {U α }α∈A , f , {f (U α )}α∈A Y . {f (U α )}α∈A . , y f (U α ), α ∈ A ⊂ A, A A , α ∈ A , xα ∈ f −1 (y) xα ∈ U α , xα ∈ f −1 (y) ∩ U α . {U α }α ∈A , , xα . {U α }α ∈A , {{xα } : α ∈ A } . {xα : α ∈ A } ⊂ f −1 (y), f −1 (y) (, 6.6.13 1). {f (U α )}α∈A , ( 5.6). , {f (Uα )}α∈A . . 7.3.16 [312] f : X → Y Σ ( Σ ) X Y () , Y Σ ( Σ ). X Σ ( Σ ). F = n∈N Fn X σ , Fn , C X () , Σ ( Σ ) ( 7.3.4). 7.3.5, n ∈ N, f (Fn ) = {f (F ) : F ∈ Fn } Y . , f (C ) = {f (C) : C ∈ C } Y () . , n∈N f (Fn ) f (C ) Σ ( Σ ) . . 7.3.3 [312] {Fα }α∈A X , Fα (α ∈ A) X Σ ( Σ ), X Σ ( Σ ). 5.5.3 Σ ( Σ ) , 7.3.16 . . 7.3.17 [312] f : X → Y X () , X Σ ( Σ ). Σ ( Σ ) Y Y Σ ( Σ ), F Y σ , C Y () , Σ ( Σ ) . f −1 (F ) = {f −1 (F ) : F ∈ F } X σ , f −1 (C ) = {f −1 (C) : C ∈ C } X () ( 3.31 3.30). C ∈ C X U ⊃ f −1 (C), f , 1.5.1, X V U ⊃ V ⊃ f −1 (C), f (V ) Y V = f −1 (f (V )). f (V ) ⊃ C, · 222 · 7 () F ∈ F f (V ) ⊃ F ⊃ C, U ⊃ V = f −1 (f (V )) ⊃ f −1 (F ) ⊃ f −1 (C), X Σ ( Σ ). 7.3.4 [312] f −1 (F ) ∈ f −1 (F ). . M Σ , M Σ . M , Σ , . . 7.3.5 [312] Σ Σ . Σ X Y X Σ . . ( 3.3.1), 7.3.18 [312] Σ Σ . X = i∈N Xi , Xi Σ , F i Xi σ , C i Xi , Σ . i ∈ N, i F i = n∈N Fni , Fni , Fni ⊂ Fn+1 (n ∈ N). Fn = Xi : F i ∈ Fni , i n , Fi × in i>n Fn X , F = n∈N Fn X σ , ( 7.2.4) F C = i∈N C i Σ , X Σ . . 7.3.19 [312] {Xi }i∈N T2 Σ , X = i∈N Xi T2 Σ . 7.3.14, Xi Σ , 7.3.18 . U X = i∈N Xi , Fni Xi , Xi T2 , Xi Vi,n , F i ∈ Fni V (F i ) ∈ Vi,n , F i ⊂ V (F i ) Vi,n ⊂ Vi,n+1 (n ∈ N) ( 4.4.1 ). Vn = Xi : V (F i ) ∈ Vi,n , i n . V (F i ) × in Vn X . i>n Fn A ( in F i × i>n Xi ) U U (A) ( X Σ ( 7.3.18), C () U , Σ A , 7.3 σ Σ · 223 · A ∈ F X), U (A) = {Uj (A) : j n(A)}, n(A) . Vn B ( in V (F i ) × i>n Xi ), B(A). Wj (A) = Uj (A) ∩ B(A), A ∈ Fn , j n(A); Wn,j = {Wj (A) : A ∈ Fn , A U }. Wn,j , W = n,j∈N Wn,j X σ , U . X , X . . X {Un }n∈N (refined sequence), Un+1 Un (n ∈ N). 7.3.6 X G∗δ X . X , G∗δ {Un }n∈N , 7.3.3, {x} = n∈N st(x, Un ), x ∈ X . {st(x, Un )}n∈N x , ( 4.4.1). x ∈ X x U , {U } ∪ {X − st(x, Un ) : n ∈ N} X, X , U X − st(x, Un ) X, Un n0 , U ∪ (X − st(x, Un0 )) = X, st(x, Un0 ) ⊂ U . . 7.3.20 [74] . X σ X Gδ Σ . σ Σ Gδ ( 7.3.12). . X Σ , F = l∈N Fl X σ , Fl , C X , Σ . {Un }n∈N X Gδ , 7.3.3, C () , X Σ . T2 Σ ( 7.3.14), {Un }n∈N G∗δ ( 7.3.3 ), x ∈ X, {x} = n∈N st(x, Un ). X , n ∈ N, Hn = m∈N Hn,m X σ , Un , Hn,m . K (n, m, l) = {H ∩ F : H ∈ Hn,m , F ∈ Fl }, K (n, m, l) . K = ∪{K (n, m, l) : m, n, l ∈ N} σ , X σ . , K X x ∈ X x U , C ∈ C x ∈ C. 7.3.6 C ( ), n ∈ N C ⊂ U ∪ (X − st(x, Un )), (C − U ) ∩ st(x, Un ) = ∅. · 224 · 7 () y ∈ C − U , y Vy Vy ∩ st(x, Un ) = ∅. V = ∪{Vy : y ∈ C − U }, C ⊂ U ∪ V , F ∈ Fl C ⊂ F ⊂ U ∪ V . , Hn X , x H ∈ Hn,m . Hn Un , H Un , x ∈ H ⊂ st(x, Un ). x ∈ H ∩ F ∈ K (n, m, l). F ⊂ U ∪ V V ∩ st(x, Un ) = ∅, F ∩ st(x, Un ) ⊂ U ∩ st(x, Un ) ⊂ U , H ⊂ st(x, Un ), H ∩ F ⊂ st(x, Un ) ∩ F ⊂ U . K X . . Michael[286] Σ Σ Σ Σ . , 7.3.5 σ , σ Σ Σ , Michael 7.3.4 “” “” Σ (Σ -space) Σ (strong Σ -space), , 7.3.14[217] ( 7.18) 7.3.5[327] 7.3.18 7.3.19[331] 7.3.20[217] , Σ . 7.3.4 “” “ ” , , Okuyama[327] Σ∗ (Σ∗ -space) Σ∗ (strong Σ∗ -space), X Σ∗ Σ ( Michael[286] ), X Σ∗ , 7.3.5 , Σ∗ . Michael[286] , Σ Σ∗ . , σ . Lašnev[240] “ f : X → Y X Y , Y Y = Y0 ∪ ( n∈N Yn ), Yn ; y ∈ Y0 , f −1 (y) .” Lašnev (Lašnev’s decomposition theorem). σ . . x ∈ X, X N x X (network of a point in a space), x ∈ ∩N , X x U , N ∈ N N ⊂ U . 7.3.21 [86] f σ X Y , Y Y = Y0 ∪ ( n∈N Yn ), Yn (n ∈ N) ; y ∈ Y0 , f −1 (y) . n∈N Pn X σ , Pn Pn ⊂ Pn+1 (n ∈ N). n ∈ N, Fn = {f (P ) : P ∈ Pn }, Fn (y) = ∩{F ∈ Fn : y ∈ F }. f , Fn y ∈ Y , , {Fn (y) : y ∈ Y } . , A ⊂ Y , z∈ / ∪{Fn (y) : y ∈ A}, V = Y − ∪{F ∈ Fn : z ∈ / F }, V z 7.3 σ Σ · 225 · V ∩ Fn (y) = ∅, y ∈ A. Yn = {y ∈ Y : Fn (y) = {y}}, Yn {Fn (y) : y ∈ Y } , Yn . {y} = Fn (y) , , Y0 = Y − n∈N Yn , y ∈ Y0 , f −1 (y) . , f −1 (y) Lindelöf . y ∈ Y0 , (1) {Fn (y)}n∈N y Y . y ∈ Y0 , Fn (y) , Y T1 , Fn (y) . Y {yn } yn ∈ Fn (y) − {y}. (1), {yn } y. Fn (y) (2) P ∈ Pm P ∩ f −1 (y) = ∅ ⇒ n m, P ∩ f −1 (yn ) = ∅. (3) n ∈ N, {P ∈ Pn : P ∩ f −1 (y) = ∅} . (3) , m ∈ N Pm {Pn }n∈N Pn ∩f −1 (y) = ∅. (2), n m, Pn ∩ f −1 (yn ) = ∅, xn ∈ Pn ∩ f −1 (yn ). Pm , {xn : n ∈ N} , f , {yn : n ∈ N} . {yn } y . (3) . , f −1 (y) , f −1 (y) Lindelöf . f −1 (y) . K = f −1 (y). K X , (4) X {Uk }k∈N K K ∩ (Uk+1 − U k ) = ∅(k ∈ N). , K X ( 7.3.4), X V , V K, V K. x ∈ K, Vx ∈ V , X Wx , x ∈ Wx ⊂ W x ⊂ Vx . K Lindelöf , K {Wx }x∈K {Wi }i∈N , {W i }i∈N K. x1 ∈ K ∩ W1 , U1 = W1 . x2 ∈ K − U 1 , n1 ∈ N, x2 ∈ Wn1 . U2 = in1 Wi , U1 ⊂ U2 , x2 ∈ K ∩ (U2 − U 1 ). , X {Uk }k∈N (4). , xk ∈ K ∩ (Uk+1 − U k )(k ∈ N). xk ∈ X − U k , n∈N Pn , Pk ∈ Pnk xk ∈ Pk ⊂ X − U k , nk nk > nk−1 . xk ∈ Pk ∩ K (2), Pk ∩ f −1 (ynk ) = ∅, zk ∈ Pk ∩ f −1 (ynk ). {f (zk )} {yn } , y, {zk } z ∈ K, z ∈ Uk0 . , zk , zk ∈ Pk , Pk ∩ U k = ∅, zk ∈ / Uk ⊃ Uk0 , k > k0 . K = f −1 (y) . . Chaber[86] “ σ ” “ T2 , σ ” . · 226 · 7 7.4 Mi () Bing-Nagata-Smirnov ( 4.3.6 4.3.7) . “ X X (i) X σ ; (ii) X σ .” 1950 1951 , Michael 1953 ( 5.1.1 5.1.2) “ X X (i ) X σ ; (ii ) X σ .” , Michael , 1957 ( 5.1.4) ( 5.1.2), “ X X (iii ) X σ .” Bing-Nagata-Smirnov , “ σ ” “ σ ” “ σ ” ( 7.4.1), σ “” “ ” ( . Michael 1959 5.1.3), ( 5.1.6) “ T1 X X (iv ) X σ .” Michael ((iii ), (iv )) Ceder 1961 ( 7.4.1), M1 M3 ( 7.4.2) “ X M1 X σ ; T1 X M3 X σ .” . . Mi (i = 1, 2, 3) . 7.4.1 [80] X B X (quasi-base), x ∈ X x U , B ∈ B x ∈ B ◦ ⊂ B ⊂ U . (P1 , P2 ) P = {(P1 , P2 )}, P1 P1 ⊂ P2 , P X (pair-base), x ∈ X x U , (P1 , P2 ) ∈ P x ∈ P1 ⊂ P2 ⊂ U . 7.4 Mi · 227 · P (cushioned), P ⊂ P, ∪{P1 : (P1 , P2 ) ∈ P } ⊂ ∪{P2 : (P1 , P2 ) ∈ P }. , , (P1 , P2 ) (B ◦ , B). 7.4.2 [80] X M1 (M1 -space), X σ ; M2 (M2 -space), X σ . T1 X M3 (M3 -space), X σ . 7.4.1 [80] M1 ⇒ M2 ⇒ M3 ⇒ . , M1 ⇒ M2 . (1) M2 ⇒ M3 . n∈N Bn X σ , Bn . n ∈ N, Pn = {(B ◦ , B) : B ∈ Bn }, P ⊂ Pn , ∪{B ◦ : (B ◦ , B) ∈ P } ⊂ ∪{B : (B ◦ , B) ∈ P } = ∪{B : (B ◦ , B) ∈ P }. , n∈N Pn X σ . M3 ⇒ . X M3 . M3 ( 7.4.2) X , ( 5.1.4) M3 , ( 5.1.2). n∈N Pn X σ , Pn . G X , n ∈ N, (2) Fn = ∪{P1 : P2 ⊂ G, (P1 , P2 ) ∈ Pn }, Fn ⊂ ∪{P2 : P2 ⊂ G, (P1 , P2 ) ∈ Pn } ⊂ G. Fσ , X . . n∈N Pn , G = n∈N Fn M1 , M1 ( 7.4.1). 7.4.1 Michael [280] . N () Stone-Čech βN N ∪ {x} = X, x ∈ βN − N. N ∪ {x} Michael . Michael X , ( 3.6.2), . x , {n} (n ∈ N) X σ , X M1 . σ , , ? J. Nagata M1 , ( [80] 9.2). M3 . Sorgenfrey ( 2.3.3) ( 7.20). , · 228 · 7 () M2 ⇒ M1 M3 ⇒ M2 ( Mi ), Ceder[80] . Gruenhage[163] Junnila[216] M3 ⇒ M2 . . . M2 ⇒ M1 M3 g . 7.4.1 [319] T1 X M3 H U ⊂ X n ∈ N H(U, n), (i) U = n∈N H(U, n) = n∈N H(U, n)◦ ; (ii) U, V, U ⊂ V ⇒ H(U, n) ⊂ H(V, n)(n ∈ N). X M3 , P = n∈N Pn σ , Pn . U n ∈ N, H(U, n) = ∪{P1 : (P1 , P2 ) ∈ Pn , P2 ⊂ U }, (ii). Pn , H(U, n) ⊂ ∪{P2 : (P1 , P2 ) ∈ Pn , P2 ⊂ U } ⊂ U. x ∈ U , P , (P1 , P2 ) ∈ Pn x ∈ P1 ⊂ P2 ⊂ U , x ∈ , U = n∈N H(U, n) = P1 ⊂ H(U, n), P1 , x ∈ P1 ⊂ H(U, n)◦ . ◦ n∈N H(U, n) , (i). , X H, (i), (ii). n ∈ N, Pn = {(H(U, n)◦ , U ) : U ∈ τ }, τ X . U x ∈ U , (i), m ∈ N x ∈ H(U, m)◦ ⊂ U , P . Pn . τ ⊂ τ . V = ∪{U : U ∈ τ }, U ⊂ V ⇒ H(U, n) ⊂ H(V, n), ∪{H(U, n)◦ : U ∈ τ } ⊂ H(V, n) ⊂ V = ∪{U : U ∈ τ }. Pn . . 1 H X (stratification[373] ), T1 (stratifiable space). M3 . H , (iii) H(U, n + 1) ⊃ H(U, n)(n ∈ N). H (U, n) = in H(U, i) H(U, n), (i), (ii). H, X U , Un = H(U, n)◦ , n ∈ N, U → {Un }. Borges[54] . , 7.4 Mi · 229 · 2 H [191] G F ⊂ X n ∈ N G(F, n), (i ) F = n∈N G(F, n) = n∈N G(F, n); (ii ) F, K, F ⊂ K ⇒ G(F, n) ⊂ G(K, n)(n ∈ N); (iii ) G(F, n + 1) ⊂ G(F, n)(n ∈ N). G. , , H U → {Un } ( 1), G ( 2). 3 H ( G) (i) ( (i )) U= H(U, n) n∈N F= G(F, n) , n∈N H ( G) (semi-stratification), (semi-stratifiable space[98, 99] ). Henry[191] . (X, τ ) , g : N × X → τ N × X g [183] (g-function), n ∈ N x ∈ X, (i) x ∈ g(n, x); (ii) g(n + 1, x) ⊂ g(n, x). , g g . g(n, x) N × X g , A ⊂ X, g(n, A) = ∪{g(n, x) : x ∈ A}. 7.4.2 [186] T1 X M3 () N × X / F , n ∈ N y ∈ / g(n, F ). g y ∈ X , G ( 7.4.1 2). n ∈ N x ∈ X, g(n, x) = G({x}, n), g(n, x) g . y ∈ / F . (i ), n ∈ N y ∈ / G(F, n). g(n, x) G (ii ), G(F, n) ⊃ x∈F G({x}, n), y ∈ / g(n, F ). , g(n, x) N × X g . X F n ∈ N, G(F, n) = / F , x∈F g(n, x). , G(F, n) (ii ) n∈N G(F, n) ⊃ F . y ∈ n∈Ny∈ / g(n, F ) = G(F, n). F = n∈N G(F, n), (i ). G X , X . . . 7.4.3 [99] (i) X ; / F , n ∈ N y ∈ / g(n, F ); (ii) N × X g y ∈ · 230 · 7 () (iii) N × X g x ∈ X {xn }, x ∈ g(n, xn ), xn → x. 7.4.2 (i) ⇔ (ii), (ii) ⇔ (iii). (ii) ⇒ (iii). N × X g (ii). x ∈ X {xn }, x ∈ g(n, xn ), U x , x ∈ / X − U , n ∈ N x∈ / g(n, X − U ), k n , x ∈ / g(k, X − U ), xk ∈ / X − U , xk ∈ U . xn → x. (iii) ⇒ (ii). N × X g (iii). y ∈ / F , n ∈ N y ∈ g(n, F ), xn ∈ F y ∈ g(n, xn ), xn → y ∈ F , . 7.4.4 [318] . T1 X M2 N × X g (i) y ∈ / F , n ∈ N y ∈ / g(n, F ); (ii) y ∈ g(n, x) ⇒ g(n, y) ⊂ g(n, x). X M2 , B = n∈N Bn X σ , Bn . X , B . g(n, x) = X − ∪{B : B ∈ Bi , i n, x ∈ / B}, (7.4.1) g(n, x) N × X g . g(n, x) (ii). y ∈ / F , y ∈ X − F . ◦ B X , B ∈ Bn y ∈ B ⊂ B ⊂ X − F , B ∩ F = ∅. (7.4.1), B ◦ ∩ g(n, x) = ∅ x ∈ F . g(n, x) (i). , g (i), (ii). (i), X . Gn = {g(n, x) : x ∈ X}, Bn = {X − ∪Gn : Gn ⊂ Gn }, Bn . B= n∈N X U x ∈ U , x ∈ / X − U . (i), n ∈ N x ∈ / g(n, X − U ). Gn = {g(n, y) : y ∈ X − U } ⊂ Gn . x∈ / ∪Gn ⇒ x ∈ X − ∪Gn = (X − ∪Gn )◦ ⊂ X − ∪Gn ⊂ U, X − ∪Gn ∈ Bn ⊂ B, B . Bn . Bn , {∪Gn : Gn ⊂ Gn } . α ∈ A, Gn (α) ⊂ Gn , {∪Gn (α) : α ∈ A} α∈A (∪Gn (α)) . y ∈ α∈A (∪Gn (α)). α ∈ A, y ∈ ∪Gn (α) ⇒ y ∈ Gn (α) g(n, x). 7.4 Mi · 231 · (ii), g(n, y) ⊂ g(n, x) ⊂ ∪Gn (α). g(n, y) ⊂ . α∈A (∪Gn (α)), α∈A (∪Gn (α)) . σ 7.4.5 [187] ( 7.4.4 (i) ). X σ N × X g (i) y ∈ / F , n ∈ N y ∈ / g(n, F ); (ii) y ∈ g(n, x) ⇒ g(n, y) ⊂ g(n, x). σ σ 7.4.4. . ( 7.3.5), 7.4.2 7.4.4 M3 , M2 , “(ii) y ∈ g(n, x) ⇒ g(n, y) ⊂ g(n, x)”. M3 M2 , M3 g , (i) (ii). 7.4.4 {∪Gn : Gn ⊂ Gn } , Gn (). , g(n, x) “ ”, . (X, τ ) N : X → τ x ∈ X N (x). x N 2 (x) = ∪{N (y) : y ∈ N (x)}, N 3 (x) = ∪{N (z) : z ∈ N 2 (x)}. 7.4.2 [216] (X, τ ) , N : X → τ x ∈ X x N (x), X V , x ∈ X, ∩{V ∈ V : x ∈ V } ⊂ N 3 (x). X , 7.4.3, g x ∈ X {xn }, g(1, x) ⊂ N (x). k ∈ N, . x ∈ g(n, xn ) ⇒ xn → x. (7.4.2) Gk = {g(k, x) : x ∈ X}, Qk Gk Hk = {x ∈ X : x ∈ g(k, y) ⇒ y ∈ N (x)}. (7.4.3) Hk ⊂ Hk+1 , k ∈ N. (7.4.2) x ∈ X, x ∈ Hk ( , k ∈ N, yk ∈ X x ∈ g(k, yk ) yk ∈ / N (x), (7.4.1), yk → x, ). k(x) x ∈ H n n. Qn (x) = ∩{Q ∈ Qi : i n, x ∈ Q} (n ∈ N); V (x) = Qk(x) (x) − ∪{H i : i < k(x)}. · 232 · 7 () V = {V (x) : x ∈ X} X . x ∈ X, y, z ∈ X ∩{V ∈ V : x ∈ V } ⊂ N (y), y ∈ N (z) z ∈ N (x) . m = k(x). x ∈ H m , x g(m, x) ∩ Qm (x) Hm . z ∈ Hm ∩ g(m, x) ∩ Qm (x). z ∈ g(m, x) ⊂ N (x). Qm Gm , y ∈ X Qm (x) ⊂ g(m, y) ⊂ N (y), ∩{V ∈ V : x ∈ V } ⊂ V (x) ⊂ Qm (x) ⊂ N (y). , y ∈ N (z). z ∈ Qm (x) ⊂ g(m, y), z ∈ Hm , (7.4.3), y ∈ N (z). . 7.4.6 (Gruenhage-Junnila [163, 216] ) M3 M2 . X M3 (), 7.4.4 X M2 . 7.4.2, N × X g 7.4.4 (i), y ∈ / F , n∈Ny∈ / g(n, F ). n ∈ N, g 7.4.2 N (x), g 2 (n, x) = g(n, g(n, x)), g 3 (n, x) = g(n, g 2 (n, x)) = g(n, g(n, g(n, x))). g 3 (n, x) N × X g . g 3 (n, x) (i). g(n, x) (i), y ∈ / F , k ∈ N y ∈ / g(k, F ), m ∈ N, m k y ∈ / g(m, g(k, F )), n ∈ N, n m y∈ / g(n, g(m, g(k, F ))) ⊃ g(n, g(n, g(n, F ))) = g 3 (n, F ). g 3 (n, x) (i). 7.4.2, n ∈ N, X Vn ∩{V ∈ Vn : x ∈ V } ⊂ g 3 (n, x) (x ∈ X). (7.4.4) g (n, x) = ∩{V ∈ Vi : i n, x ∈ V }. (7.4.5) g (n, x) g . (7.4.4), g (n, x) ⊂ g 3 (n, x), g (n, x) (i). (7.4.5), y ∈ g (n, x) = ∩{V ∈ Vi : i n, x ∈ V }, ∩{V ∈ Vi : i n, y ∈ V } ⊂ ∩{V ∈ Vi : i n, x ∈ V }, g (n, y) ⊂ g (n, x). g (n, x) 7.4.4 (ii). X M2 . . 7.4 Mi · 233 · M3 ⇒ M2 , . [186] 7.4.7 M3 () σ . 7.4.4 7.4.5 7.4.6 . . M3 σ . Heath[186] 1969 , , Heath Hodel[187] σ (∗) “ X σ N × X g X x {xn }, {yn }, x ∈ g(n, xn ) xn ∈ g(n, yn ), yn → x.” (∗) M3 σ ( , 7.21). (∗) , , 7.5 ( 7.5.1), . Mi . , σ ( 7.3.3), . 7.4.8 [80] Mi Mi (i = 1, 2, 3) . ( 7.4.8) Mi (i = 1, 2, 3) . 7.4.9 7.4.10 7.4.1 M2 ( M3 ) . M2 , M3 . 7.4.9 [80] M2 ( M3 ) . M2 . X M2 , B X σ , B X . A ⊂ X, , B|A = {B ∩ A : B ∈ B} A σ , A M2 . . M3 () , . 7.4.3 [54] X . X (A, U ), A , U , UA ⊂ U (i) A, B, A ⊂ B; U, V, U ⊂ V ; UA , VB UA ⊂ VB ; (ii) A ∩ U ⊂ UA ⊂ U A ⊂ A ∪ U ; (ii ) A ⊂ U (A, U ), , A ⊂ UA ⊂ U A ⊂ U ((ii) ). X U → {Un } ( 7.4.1 UA = 1). {Un − (X − A)n }, n∈N (i). A ∩ U ⊂ UA . x ∈ A ∩ U , x ∈ U , k ∈ N x ∈ Uk , x ∈ A, x ∈ / X − A, x ∈ Uk − (X − A)k ⊂ UA ( , (X − A)k ⊂ X − A). UA ⊂ A ∪ U. x ∈ / A ∪ U, x ∈ / A, n ∈ N x ∈ (X − A)n , (X − A)n ∩ (X − U n ) x UA , (ii). (ii ) (ii) . . · 234 · 7 () 7.4.10 [54] . f : X → Y X Y , U → {Un } X . , Y T1 . Y V , ( 7.4.3 ) Tn = f −1 (V )n , Sn = f −1 (f (T n )), Qn = f −1 (V )Sn , Vn = f (Qn )◦ , (a) f (T n ) ⊂ Vn . 7.4.3 (ii ) , Qn Sn , f , 1.5.1, f (Qn ) f (T n ) , f (T n ) ⊂ Vn . (b) V n ⊂ V . V n ⊂ f (Qn ) = f (Qn ), 7.4.3 (ii ) , Qn ⊂ f −1 (V ), f (Qn ) ⊂ V , Vn ⊂V. (c) n∈N Vn = V . (b) (a), V ⊃ Vn ⊃ f (Tn ), V ⊃ Vn ⊃ n∈N Tn = V, f (Tn ) = f n∈N n∈N n∈N Vn = V . V, W X , V ⊂ W . X , Tn Sn , Vn , , Qn 7.4.3 (i) Vn ⊂ Wn (n ∈ N). , V → {Vn } Y , Y . . Ceder[80] M3 , 5.5.5 7.4.10, . 7.4.1 [356] . Borges[54] . 7.4.9 7.4.10 M1 ? M1 . 7.4.4 M1 ? M1 ? M3 ⇒ M1 ? M1 , , M1 M1 . , . 7.4.1 [204] M1 M1 . M1 X M1 X M1 ( M1 , ⇒ ). 7.4 Mi · 235 · D M1 X , D = X. X B B ∩ D = B ( 1.18). B = n∈N Bn M1 X σ , Bn . Bn |D = {B ∩ D : B ∈ Bn }. B ∩ D = B, Bn |D D . ∪{Bn |D : n ∈ N} D σ , D M1 . M1 X M1 , A X , A M1 , A M1 . . M1 , 7.4.11 7.4.9 ( 5.2.1, 5.5.7 ). 7.4.4 [133] f : X → Y , B X , C = {f (B)◦ : B ∈ B} Y . U U ∗ = ∪{U : U ∈ U }. B ⊂ B y ∈ ∪{f (B)◦ : B ∈ B }, f (B) ⊃ f (B)◦ , f (B ∗ ) ⊃ f (B ∗ ) ⊃ ∪{f (B)◦ : B ∈ B }. f , f (B ∗ ) , f (B ∗ ) ⊃ ∪{f (B)◦ : B ∈ B } y, f −1 (y)∩B∗ = ∅. B , B ∈ B f −1 (y)∩B = ∅. U y , f −1 (U )∩B = ∅. f , f −1 (U )∩B , f (f −1 (U ) ∩ B)◦ = (U ∩ f (B))◦ = U ∩ f (B)◦ , U ∩ f (B)◦ . y U f (B)◦ , y ∈ f (B)◦ . C . . 7.4.11 [133] M1 . f : X → Y M1 X Y . B = n∈N Bn M1 X σ , Bn . , U , U . Bn Bn . , C = {f (B)◦ : B ∈ B}, 7.4.4, C , Bn ⊂ Bn+1 , n ∈ N. Y σ . y ∈ Y , V y , B X , B ⊂ B f −1 (y) ⊂ B ∗ ⊂ f −1 (V ). n ∈ N, Bn = B ∩ Bn , B = Bn , n∈N f −1 (y) ⊂ Bn∗ ⊂ f −1 (V ). n∈N · 236 · 7 () Bn ⊂ Bn+1 (n ∈ N), {Bn∗ } . f , ∗ ◦ ∗ m y ∈ f (Bm ) ⊂ V . B ∈ Bm ⊂ B, B = Bm , f (B)◦ ∈ C y ∈ f (B)◦ ⊂ V . C Y σ . , Y , Y M1 . . 6.6 . f : X → Y , f X Y . X U y ∈ Y , y ∈ Y U ⊃ f −1 (y). k ∈ N, f : X → Y k (k-to-one), y ∈ Y , f −1 (y) X k . 7.4.2 M1 (i) [56] ; (ii) [133] ; (iii) k [162] . ⇒ ⇒ , (i). ( 7.23), 7.4.11 , 7.4.11 (ii). T2 k (iii). . ( 7.24), (ii) ( ) , . X , Y , f X × Y Y , f ( 3.16). , M1 ( 4.4.1). 7.4.3 [133, 204] M1 . 7.4.11 5.5.8 . . Heath-Junnila ( 7.4.12). M3 ⇒ M1 M1 . 7.4.5 X M1 X σ . B M1 X σ , B = {B : B ∈ B} X σ . , B X σ , B ◦ = {B ◦ : B ∈ B} X σ . . 7.4.6 [388] X σ . F X , X σ D, F ∈ F , F ∩ D F . 7.4.5 7.4.3, σ . X G ( 7.4.1 3) (i) F , F = n∈N G(F, n), G(F, n) ; 7.4 Mi · 237 · (ii) F, K, F ⊂ K ⇒ G(F, n) ⊂ G(K, n)(n ∈ N). Q(F ) = ∩F − ∪(F − F ), F ⊂ F, Q(∅) = X − ∪F . {Q(F ) : F ⊂ F } X . n ∈ N, Qn (F ) = ∩F − G(∪(F − F ), n), Qn (∅) = X − G(∪F , n). Q(F ) = X . , x ∈ X, (F )x = {F ∈ F : x ∈ F }, F ⊂ F, n∈N Qn (F ) {Qn (F ) : F ⊂ F } U = G({x}, n) − ∪(F − (F )x ), U x ∈ U . (F )x = F ⊂ F , F ∈ F − (F )x , Qn (F ) ⊂ F U ⊂ X − ∪(F − (F )x ) ⊂ X − F, Qn (F ) ∩ U = ∅; F ∈ (F )x − F , Qn (F ) ⊂ X − G(∪(F − F ), n) ⊂ X − G(F, n) ⊂ X − G({x}, n), Qn (F ) ∩ U = ∅. Q = {Qn (F ) : F ⊂ F , n ∈ N}, Q {Q(F ) : F ⊂ F } σ . H X σ H ∈ H , Q ∈ Q, H ∩ Q = ∅, x(H, Q) ∈ H ∩ Q. . D = {x(H, Q) : H ∈ H , Q ∈ Q, H ∩ Q = ∅}, D . , D X σ . F ∈ F , F W , X V , V ∩ F = W . y ∈ W . H ∈ H , Q ∈ Q, y ∈ H ∩Q ⊂ H ⊂ V. Q = Qn (F ), n ∈ N, F ⊂ F . Q ∩ F = ∅, F ∈ F , Q ⊂ F , x(H, Q) ∈ H ∩ Q ⊂ V ∩ F = W , F ∩ D F . , D X . . 7.4.12 (Heath-Junnila [188] ) M3 M1 . X M3 , S = {0} ∪ {1/n : n ∈ N} . Z = X × S, X × (S − {0}) Z ; X × {0} · 238 · 7 () X × S . , Z , X Z X × {0}. Z M1 . B ⊂ X, B[0] = B × {0}, B[n] = B × ({0} ∪ {1/k : k n}) (n ∈ N). B X , B[n] = B[n] − B[0], B[n] Z . 7.4.6, X B = n∈N Bn , Bn . Unm = {B[m] : B ∈ Bn } (n, m ∈ N), Vn = {{(x, 1/n)} : x ∈ X} (n ∈ N), Unm Z , Vn Z , Unm ∪ n,m∈N Vn n∈N Z σ . 7.4.5, Z M1 . Z Y , Y M1 Y X . 7.4.6, X D = n∈N Dn , Dn X Dn ⊂ Dn+1 , B ∈ B, B ∩ D B . Y = X[0] ∪ (∪{Dn × {1/n} : n ∈ N}). Y M1 . B ∈ B, (B[n] − B[0]) ∩ Y Y ClY ((B[n] − B[0]) ∩ Y ) = B[n] ∩ Y. (7.4.6) , , ClY ((B[n] − B[0]) ∩ Y ) ⊂ B[n] − B[0] ∩ Y = B[n] ∩ Y. x ∈ B, W x X , k n, B ∩ D B, m k x ∈ B ∩ W ∩ Dm , (x , 1/m) ∈ W [k] ∩ ((B[n] − B[0]) ∩ Y ), B[n] ∩ Y ⊂ ClY ((B[n] − B[0]) ∩ Y ). (7.4.6) . , B[n] ∩ Y Y , Unm |Y n,m∈N ∪ Vn |Y n∈N 7.4 Mi · 239 · Y σ . , Y X Y M1 . f . , f . f . Y F , x ∈ X − f (F ), (x, 0) ∈ / F , x V m ∈ N, V [m] ∩ F = ∅. n < m, x ∈ / f (F ∩(X × {1/n})) ⊂ Dn , x Vn , Vn ∩f (F ∩(X × {1/n})) = ∅. U = V ∩ ( n n, Em ⊂ En . , x ∈ D Ux . , x ∈ Bα ∩ Dn ( n ), Ux () Wn (x) ∩ (Bα )◦n ⊂ Wn (x) ∩ (Bα )n . x ∈ Bα ∩ Dn , ∪Ux ⊂ Wn (x) ∩ (Bα )n (n ∈ N). (7.4.7) ϕ Bα ∩ D x ∈ Bα ∩ D, ϕ(x) ∈ Ux (ϕ(x) x ). ϕ Φα . Bαϕ = Bα◦ ∪ (∪{ϕ(x) : x ∈ Bα ∩ D}) (ϕ ∈ Φα ), Bαϕ . (7.4.8) B # = {Bαϕ : α ∈ A, ϕ ∈ Φα }. B # F . G ⊃ F , B F , Bα ∈ B F ⊂ Bα◦ ⊂ Bα ⊂ G. x ∈ Bα ∩ D, x ∈ G, Ux ∈ Ux x ∈ Ux ⊂ G. ϕ ∈ Φα F ⊂ Bα◦ ⊂ Bαϕ ⊂ G. B # F . B ⊂ B# . x0 ∈ / ∪{Bαϕ : Bαϕ ∈ B }. A = {α ∈ A : ϕ ∈ Φα , Bαϕ ∈ B }, H = ∪{Bα : α ∈ A }, Φα = {ϕ ∈ Φα : Bαϕ ∈ B } (α ∈ A ). (7.4.9) · 242 · 7 () (7.4.8), Bα ∩ D ⊂ Bαϕ , Bα ∩ D ⊂ Bαϕ . Bα ∩ D Bα , Bα = Bα ∩ D. Bα ⊂ Bαϕ . (7.4.9), x0 ∈ / H, n ∈ N x0 ∈ / Hn . : Bαϕ ∈ B . C = ∪ Bα◦ ∪ ∪ ϕ(x) : x ∈ Bα ∩ Dk kn x ∈ Bα ∩ Dm , α ∈ A , m n. ϕ ∈ Φα , ϕ(x) ∈ Ux , (7.4.7), ∪Ux ⊂ (Bα )m , Bα ⊂ H, ϕ(x) ⊂ (Bα )m ⊂ (Bα )n ⊂ Hn . C ⊂ Hn . Hn , C ⊂ Hn , x0 ∈ / Hn , x0 ∈ / C. D = ϕ(x) : x ∈ Bα ∩ Dk , Bαϕ ∈ B . 1k n , x ∈ / Gm = Gm . D = {Uα : α ∈ D Uα ∈ ∪{Um |Gm : m > n}}. D = {Uα : α ∈ D }, D ⊂ D , Gm ⊃ ∪{Uα : α ∈ D }. x∈ / ∪{Uα : α ∈ D }. ∪{Uα : α ∈ D − D } ⊂ ∪{Ui |Gi : i n}, ∪{Ui |Gi : i n} , x∈ / U α (α ∈ D − D ) ⇒ x ∈ / ∪{Uα : α ∈ D − D }, x∈ / ∪{Uα : α ∈ D }, D . . 7.4.9 S X , T S , T X . S S X X . . 7.4.17 [204] X M1 , X M1 , X . M1 ⊂ P . 7.4.16, X . x ∈ X, x X , X H1 H2 (i) X = H1 ∪ H2 ; (ii) i = 1, 2, x ∈ Hi , Hi {Hi,n }n∈N {x} = ∩{Hi,n : n ∈ N}. X , X {Gn }n∈N X = G1 ⊃ G2 ⊃ G2 ⊃ G3 ⊃ · · · ; {x} = ∩{Gn : n ∈ N}. H1 = ∪{G2n−1 − G2n : n ∈ N}, H2 = ∪{G2n − G2n+1 : n ∈ N}. · 244 · 7 () Gk (k ∈ N) , , Gk − Gk+1 = Gk − Gk+1 , H1 = ∪{G2n−1 − G2n : n ∈ N} = ∪{G2n−1 − G2n : n ∈ N}, H2 = ∪{G2n − G2n+1 : n ∈ N} = ∪{G2n − G2n+1 : n ∈ N}. H1 , H2 , (i). n ∈ N, H1,n = H1 ∩ G2n−1 , H2,n = H2 ∩ G2n . H1,n = H1 ∩ G2n−2 , H2,n = H2 ∩ G2n−1 . H1,n , H2,n H1 , H2 . {x} = ∩{Hi,n : n ∈ N}, , H1 , H2 (ii). : x ∈ Hi , , H1 , H2 M1 . x ∈ Hi , 7.4.5, x Hi σ Ui = ∪{Ui,n : n ∈ N}, Ui Hi . (ii) 7.4.8, ∪{Ui |Hi,n : n ∈ N} x Hi , Ci . Ci Hi ( , 7.19). 7.4.9, Ci X X . x ∈ / Hi , Ci = ∅. C = {C1 ∪ C2 : Ci ∈ Ci , i = 1, 2}. (i) C x X , X ( , 7.19). C X , C X x . C ◦ = {C ◦ : C ∈ C } x . . Itō[204] 7.4.10 ( 7.4.18), [165] X . (G) Gruenhage . (G) M1 X M1 H, K, H ⊂ K, H K σ Gruenhage (∗), (G). , , Gruenhage . (G) M1 M1 , Gruenhage “ M1 M1 ?” 7.4.1 7.4.18 Gruenhage . 7.4 Mi · 245 · 7.4.18 [204] M1 M1 . f : X → Y M1 X Y . H, K X , H ⊂ K. K M1 , H K , 7.4.17, H K , X 7.4.10 (G), Y M1 . Y M1 . . 7.4.10 [204] 7.4.6 Nagata M1 . 7.4.5 7.4.9 , Nagata . . M1 , 7.4.18 Lašnev (Lašnev space). 7.4.7 [363] Lašnev M1 . 2004 , Mizokami[298] , Itō Mi . . 7.4.19 7.4.19 [298] M1 . 7.4.8 (i) X M1 ; (ii) X ; (iii) X ; (iv) X σ . 7.4.19, (i) ⇒ (ii); 7.4.16, (ii) ⇒ (iii); (iii) ⇒ (iv) ; 7.4.15, (iv) ⇒ (i). . Mizokami[297] P , P , M1 , M1 . M1 M1 . 7.4.9 M1 . f M1 X Y . 7.4.10, Y M3 . y ∈ Y , 7.4.19, f −1 (y) X B, 7.4.4, {f (B)◦ : B ∈ B} y . 7.4.8, Y M1 . . ( 7.23), , Tamano [388] . 7.4.10 M1 . 7.4.11 X M1 , A X , X/A M1 . f : X → X/A . f , X/A M3 . 7.4.8, X/A , X/A M1 . · 246 · 7 () . M3 ⇒ M1 Mi (). Heath Junnila[188] M0 (M0 -space, σ ), M0 M1 . Gruenhage[165] (G) ( 7.4.10) Fσ (Fσ -metrizable space, ) Fσ (G), M1 . , Mizokami[295] µ (stratifiable µ-space), Tamano[386] (regularly stratifiable space) (strongly regularly stratifiable space) Mizokami[297] M (stratifiable space with M-structures). Junnila Mizokami[223] . µ (µ-space[313] ). X µ , Fσ . , µ Fσ , µ σ . Mizokami[297] µ M1 , M0 , M0 µ . Lašnev Fσ Fσ ( [117] 2), [223] . Junnila Mizokami Fσ µ , µ Fσ . Tamono[389] Lindelöf σ µ . . X A Itō Tamano[206] x ∈ X (almost locally finite), x U B {A ∩ U : A ∈ A } ⊂ {B ∩ V : B ∈ B, V x }. A X , A X . σ , M1 , µ . . X A Ohta[322] x ∈ X (finitely closure-preserving), A ⊂ A , x U A B, U ∩ ∪{A : A ∈ A } = U ∩ ∪{B : B ∈ B}. A X , A X . Ohta σ , σ M0 , M1 . 7.1 [141] . 7.4 Mi · 247 · 7.1 7.1[141] . M3 M1 M1 . ( 7.1) “” M1 , M1 , M. Itō M1 (, T. Mizokami M1 M σ ). M3 ⇒ M1 . 7.1 , M1 M3 ( P ). · 248 · 7 () 1961 J. G. Ceder (Mizokami[298] , 7.4.19), “” . , [141], [165], [170], [388] . M3 ⇒ M1 Mary Rudin[346] , . , . G. Gruenhage[170] ZFC. , . 7.1 , M1 ? Fσ , , ? M0 µ σ σ M1 7.5 k , , σ Siwiec-Nagata ( 7.3.5). . g , σ ( 7.3.2). g σ . 7.4 g , M2 M3 , M2 = M3 ( 7.4.6), ( 7.3 ) g σ ( 7.4.5) M2 ( 7.4.4) ( 7.4.5) X σ N × X g (i), (ii) ((i) ⇔ (i ), 7.4.3) (i) y ∈ / F , n ∈ N y ∈ / g(n, F ); (i ) x ∈ X {xn }, x ∈ g(n, xn ), xn → x; (ii) y ∈ g(n, x) ⇒ g(n, y) ⊂ g(n, x). M2 σ ( 7.4.4 7.4.5), M3 ⇒ M2 , M3 ⇒ σ ( 7.4.7). Heath Hodel g σ ( 7.4.7 (∗)) . (∗) , , 7.3.5 7.4.5 7.5 k , , · 249 · , . ( 7.5.6). 7.5.1 (Heath-Hodel [187] ) X σ N×X g (∗) X x {xn }, {yn }, x ∈ g(n, xn ) xn ∈ g(n, yn ), yn → x. σ (∗), 7.4.5 (i ), (ii). {xn }, {yn} X , x ∈ g(n, xn ), xn ∈ g(n, yn ), 7.4.5 (ii) xn ∈ g(n, yn ), g(n, xn ) ⊂ g(n, yn ), x ∈ g(n, yn ). 7.4.5 (i ) yn → x. g (∗) σ . , (∗) X σ , 7.3.1 . , 7.4.5 (i ) (∗) ( (∗) yn xn ), 7.4.5 (i ) (i). X g (∗), X “ < ” , x ∈ X i, n ∈ N, H(x, i, n) = X − [(∪{g(i, y) : y < x}) ∪ (∪{g(n, y) : y ∈ / g(i, x)})]. (7.5.1) , H(x, i, n) ⊂ g(i, x). H (i, n) = {H(x, i, n) : x ∈ X}. H (i, n) . z ∈ X, y X z ∈ g(i, y) . , y < x , g(i, y) ∩ H(x, i, n) = ∅ [ (7.5.1) ]. x < y , y , z ∈ / g(i, x), g(n, z) ∩ H(x, i, n) = ∅ [ (7.5.1) ]. g(i, y) ∩ g(n, z) z H (i, n) H(y, i, n) , H (i, n) . m ∈ N, F (x, i, n, m) = {y ∈ H(x, i, n) : x ∈ g(m, y)}, F (i, n, m) = {F (x, i, n, m) : x ∈ X}. F (i, n, m) [ (7.5.2) ] (7.5.2) H (i, n) H(x, i, n) , H (i, n) , F (i, n, m) . F = {F (i, n, m) : i, n, m ∈ N} X . p ∈ U , U . i ∈ N, xi X p ∈ g(i, xi ) , p ∈ / X − g(i, xi ), 7.4.5 (i) ( ), n(i) ∈ N p∈ / ∪{g(n(i), y) : y ∈ / g(i, xi )}, · 250 · 7 () xi (7.5.1) , p ∈ H(xi , i, n(i)) ⊂ g(i, xi ). 7.4.5 (i ) ( ) xi → p. p g(m, p), i(m) m xi(m) ∈ g(m, p). (7.5.2) p ∈ H(xi , i, n(i)) i ∈ N , p ∈ F (xi(m) , i(m), n(i(m)), m). Fm . m Fm ⊂ U . p ∈ g(i(m), xi(m) ), , ym ∈ Fm − U , i(m) m, p ∈ g(m, xi(m) ). ym ∈ Fm , (7.5.2) , xi(m) ∈ g(m, ym ). (∗) ym → p. p ∈ U , ym ∈ / U . F X σ . . (∗) σ , . (∗) ⇒ σ , k ( 7.5.1) ⇒ σ ( 7.5.7). 7.4 ( 7.4.1 3). (Mi ), . . , ( H) U → {Un }, U , Un , U = n∈N Un , V ⊂ U Vn ⊂ Un (Vn ), n < m , Un ⊂ Um . 7.5.2∼ 7.5.4 Creede[99] . 7.5.2 , . , g ( 7.4.3). X . g(n, x) N × X g , 7.4.3 (iii). X A, N × A g g (n, x) = g(n, x) ∩ A (n ∈ N; x ∈ A), g (n, x) 7.4.3 (iii), A . , Xi (i ∈ N) , N × Xi g gi , 7.4.3 (iii). x = (xn ) ∈ n∈N Xn , g(n, x) = gi (n, xi ) × in Xn , i>n g N × ( n∈N Xn ) g , 7.4.3 (iii). . 7.5.3 . f : X → Y X Y , G Y , f −1 (G) X, X , f −1 (G) → {f −1 (G)n }. G → {f (f −1 (G)n )} Y , Y . . 7.5 k , , · 251 · 7.5.1 [356] . 5.5.5 . . 7.5.4 , . {Un }n∈N X . {Un }n∈N . N × X g g(n, x) = st(x, Un ) (n ∈ N, x ∈ X). , g 7.4.3 (iii). X . , U X , X U → {Un }. U “ < ” , U = {Oα : α ∈ A}, A , 0. n ∈ N, F0,n = (O0 )n , Fα,n = (Oα )n − ∪{Oβ : β ∈ A, β < α} (α > 0), Fn = {Fα,n : α ∈ A}, Fn . F = n∈N F . x ∈ X, U x Oα , n ∈ N x ∈ (Oα )n , , x ∈ Fα,n . Fn . , Fα,n . x ∈ X, U Fβ,n ∩ Oα = ∅. x Oα . β > α Fβ,n , Oα , β < α Oβ , , x ∈ / Oβ , Oβ ⊂ X − {x}, (Oβ )n ⊂ (X − {x})n , [X − (X − {x})n ] ∩ (Oβ )n = ∅, X − (X − {x})n x , Fn Fα,n β < α. x Oα ∩ (X − (X − {x})n ) . , F σ , U , 6.1.1, X . . , ( Gδ ). 7.5.2, X 2 , . T2 X ( ), X Gδ ( 2.7), T2 Gδ , 7.5.4, . G∗δ ( 7.3.3 ). 7.5.2 [201] T2 , M . X T2 , M , X Gδ . 7.3.11, X . . · 252 · 7 () 7.5.1 [270] X k (k-semistratifiable space), U → {Un }, K ⊂ U , n ∈ N K ⊂ Un . k (k-semistratification). , k , k ( ). k . 8.2.3. 7.5.5 [270] k T1 , M1 . X k T1 . U → {Un } X k . x ∈ U , U X , {Wn (x)}n∈N x , U ⊃ W1 (x) ⊃ W2 (x) ⊃ · · ·. n ∈ N, Wn (x) ⊂ Un , yn ∈ Wn (x) − Un , {yn } x. K = {x} ∪ {yn : n ∈ N} , K ⊂ U . U → {Un } k , m ∈ N K ⊂ Um , ym ∈ Um , ym . U = n∈N (Un )◦ . 7.4.1, X Wn (x) ⊂ Un , x ∈ (Un )◦ . , 7.4.5, X M1 . . 7.5.6 [149, 243] T2 X k , N × X g x ∈ X X {xn }, {yn }, xn ∈ g(n, yn ), xn → x, yn → x. U → {Un } X k , N × X g g(n, x) = X − (X − {x})n . x ∈ X X {xn }, {yn }, xn ∈ g(n, yn ), xn → x, yn → x. U X , x ∈ U , xn → x, , {x} ∪ {xn : n ∈ N} ⊂ U , k , m ∈ N {x} ∪ {xn : n ∈ N} ⊂ Um . xn ∈ g(n, yn ) = X − (X − {yn })n , n m , xn ∈ Un ∩ (X − (X − {yn })n ) = Un − (X − {yn })n . (7.5.3) yn ∈ U , yn → x. , yn ∈ / U , U ⊂ X − {yn }, Un ⊂ (X − {yn })n , (7.5.3) . , g(n, x) N × X g , 7.4.3 (iii), X . X U , n ∈ N, Un = X − ∪{g(n, x) : x ∈ X − U }. U → {Un } k , K ⊂ U , n ∈ N K ⊂ Un . ( 7.4.3), (7.5.4) 7.5 k , , (7.5.4) ] · 253 · , n ∈ N, K ⊂ Un , K {xn : n ∈ N} [ xn ∈ K − Un = K ∩ (∪{g(n, x) : x ∈ X − U }). xn ∈ ∪{g(n, x) : x ∈ X − U }, xn ∈ g(n, yn ), yn ∈ X − U . {xn }, {yn }, {xn } ⊂ K, {yn } ⊂ X − U xn ∈ g(n, yn ). 7.5.2, K ( T2 ), ( 3.5.4), {xn } . , xn → x0 ∈ K ⊂ U , , yn → x0 . {yn } ⊂ X − U . . 7.5.7 [149, 243] k σ . X k . 7.5.6 ( ), N × X g g(n, x) x ∈ X X {xn }, {yn }, xn ∈ g(n, yn ), xn → x, yn → x. X x {xn }, {yn } x ∈ g(n, xn ), xn ∈ g(n, yn ). x ∈ g(n, xn ) xn → x, yn → x. Heath-Hodel ( 7.5.1 ) X σ . . , ⇒ k ⇒ σ ⇒ . . ℵ [ 8.1.1, k ( 8.2.1)], [328] . T2 cosmic ( 8.1.3, σ ), [185] , 7.5.5, k . σ ( [166] 9.10). T2 ( σ ), ( [261] 2.7.14 2.10.9). k , , , . Lutzer[270] k , [140] 6.6.9 k . 7.5.1 [258] f k X , Y T2 , f . Y . X X T2 , k , g(n, x) N × X g , 7.5.6 , x ∈ X, n∈N g(n, x) = {x}. 7.5.3, Y . K Y , 7.5.2, K Y . y ∈ K, xy ∈ f −1 (y). E = {xy : y ∈ K}. f (E) = f (E) = K. E ( 7.5.7 7.3.4), E , ( 3.5.2). {xn } ⊂ E, zn ∈ E ∩ g(n, xn )(n ∈ N). zn , z ∈ g(n, xn ), {xn } z, {xn } . zn · 254 · 7 () , f |E {f (zn )} ⊂ K , {zn } E . {zn } . x {zn } , X , X {Vi }i∈N x ∈ Vi+1 ⊂ V i ∩ g(i, x)(i ∈ N). zni ∈ Vi (i ∈ N). {zni } i∈N V i ⊂ i∈N g(i, x) = {x}, x {zni } . {zni } x, x U {zni } {znik } znik ∈ / U . {znik } {zn } , / U , . zni → x. g ( 7.5.6 x, x ∈ ), {xn } . E . . 7.5.8 f : X → Y , X, Y T2 . X k , Y k . X k U → {Un }, V Y , f −1 (V ) X, V → {f (f −1 (V )n )} Y ( 7.5.3). Y K, f ( 7.5.1), X C, f (C) = K. −1 K ⊂ V , C ⊂ f (V ), X k , n ∈ N, C ⊂ f −1 (V )n , K ⊂ f (f −1 (V )n ). V → {f (f −1 (V )n )} Y k . . , k [139] . 7.5.8 X T2 ?[427] —— ( 7.5.2). ( 7.5.9). ( 7.5.10), . , Borges ( 7.4.10) ( 5.1.4, ( 5.1.1) ), 7.5.11 . 7.5.9∼ 7.5.11 Heath, Lutzer Zenor[189] . , [95]. 7.5.2 T1 X (monotonically normal space), X F, K, D(F, K) (i) F ⊂ D(F, K) ⊂ D(F, K) ⊂ X − K; (ii) F ⊂ F , K ⊃ K , F , K , D(F, K) ⊂ D(F , K ). D X (monotone normal operator). D(F, K) ∩ D(K, F ) = ∅, , D (F, K) = D(F, K) ∩ (X − D(K, F )) D(F, K). ( 4.1.2) , . 7.5.9 X X . X , F → {Fn } ( G, 7.4.1 7.5 k , , 2), Fn F , F = Fn ⊃ Fn+1 , n ∈ N. F, K X D(F, K) = · 255 · n∈N F n , F ⊂ K ⇒ Fn ⊂ Kn , , (Fn − K n ). n∈N , D(F, K) ⊃ F . y ∈ K, y ∈ / F , m ∈ N, y ∈ / F m . (X − F m ) ∩ Km = Km − F m y D(F, K) . D(F, K) ⊂ X − K. D . , X , F → {Fn }, Fn F ( G, 7.4.1 3), D. Fn = D(F, X − Fn ), Fn F , F = n∈N (Fn )− . , F ⊂ D(F, X − Fn ) ⊂ D(F, X − Fn ) ⊂ Fn , F ⊂ (Fn )− = n∈N D(F, X − Fn ) ⊂ n∈N Fn = F. n∈N F → {Fn } X D , . . 7.5.10 . f : X → Y , DX X . F, K Y , f −1 (F ), f −1 (K) X , U DX (f −1 (F ), f −1 (K)) ( f ), U = {x ∈ X : f −1 (f (x)) ⊂ DX (f −1 (F ), f −1 (K))}, f (U ) ( 1.5.1), f (U ) ⊂ f (DX (f −1 (F ), f −1 (K))). DY (F, K) Y . , F ⊂ f (U ). f (U ) ⊂ Y − K. DX , f (U ) = f (DX (f −1 (F ), f −1 (K))) ⊂ f (X − f −1 (K)) = Y − K, Y − f (DX (f −1 (F ), f −1 (K))) ⊃ K, y ∈ K, Y − f (DX (f −1 (F ), f −1 (K))) y f (U ) , f (U ) ⊂ Y − K. · 256 · 7 () , DY 7.5.2 (ii), DY Y . . 7.5.9 7.5.10 7.5.3 ( 7.4.10), . 7.5.11 . F X , X D D(F, K) ∩ D(K, F ) = ∅. F ∈ F , F ∗ = ∪{F ∈ F : F = F }. UF = D(F, F ∗ ), F ⊂ UF . F0 , F1 ∈ F , F0 = F1 , UF0 ∩ UF1 = D(F0 , F0∗ ) ∩ D(F1 , F1∗ ) ⊂ D(F0 , F1 ) ∩ D(F1 , F0 ) = ∅. . ( 4.1.1) . 7.5.3 [7] X , x, y ∈ X d(x, y) (i) d(x, y) = 0 x = y; (ii) d(x, y) = d(y, x), d(x, y) X (symmetric). , , ε B(x, ε) = {y ∈ X : d(x, y) < ε} . , 4.1.1 “ y ∈ B(x, ε), δ > 0 B(y, δ) ⊂ B(x, ε)”, X , 7.5.4 . 7.5.4 [7, 21] X (symmetrizable), X d U ⊂ X x ∈ U , ε > 0 B(x, ε) ⊂ U . (X, d) (symmetric space). 7.5.4 , ε , 7.5.4 “ U U ε ”. 7.5.4 F ⊂ X x∈ / F , D(x, F ) > 0 ( 4.1.2), F x ∈ / F , ε > 0 B(x, ε) ∩ F = ∅. 7.5.5 [183, 412] X (semi-metrizable), X d 7.5.4 “ x ∈ X, ε > 0, x ∈ B(x, ε)◦ ”. (X, d) (semi-metric space). . “ x ∈ U , ε > 0, x ∈ B(x, ε)◦ ⊂ B(x, ε) ⊂ U ” ( 7.5.4 ), 7.5 k , , · 257 · {B(x, ε) : ε > 0} x ( ). “ ε ” “1/n”, {B(x, 1/n)}n∈N x , . , T1 . 7.5.12 [21] T2 X, (i) X ; (ii) X ; (iii) X Fréchet . 7.5.5 , (iii) ⇒ (i). X Fréchet (Fréchet 2.3.1 ), x ∈ X, ε > 0, x ∈ B(x, ε)◦ . , x ∈ X − B(x, ε)◦ = X − B(x, ε). X Fréchet , X − B(x, ε) {xn } xn → x. X T2 , ( 2.2.4), F = {xn : n ∈ N}, F = F ∪ {x} F . , y ∈ / F , y = x, δ > 0 B(y, δ) ∩ F = ∅, B(y, δ) ∩ F = ∅; y = x, B(y, ε) ∩ F = ∅. F , x ∈ B(x, ε)◦ . . [0, ω1 ) Fréchet , [179] . 7.5.13 [99] . . X X T1 . , X T1 , X F ⊂ X, G(F, n) = {y : D(y, F ) < 1/2n }◦ , x ∈ B(x, ε)◦ ( 7.5.5), F ⊂ G(F, n). F = G(F, n), F ⊂ K () ⇒ G(F, n) ⊂ G(K, n) (n ∈ N). n∈N F → {G(F, n)} X . . X T1 . x ∈ X, x {b(n, x)}n∈N , N × X g g(n, x) x ∈ g(n, yn ) ⇒ yn → x ( 7.4.3). h(n, x) = b(n, x) ∩ g(n, x), ⎧ ⎪ x = y, ⎪ ⎨ 0, n d(x, y) = / h(n, y) 1/2 , x = y, n ∈ N x ∈ ⎪ ⎪ ⎩ y∈ / h(n, x) , · 258 · 7 () d(x, y) = sup{1/2n : x ∈ / h(n, y) y ∈ / h(n, x)} ( “sup” 1/2n ). , d X ( T1 ). , y ∈ h(n, x) ⇒ d(x, y) < 1/2n , h(n, x) ⊂ B(x, 1/2n )◦ . {B(x, 1/2n ) : n ∈ N} x . , x U B(x, 1/2n ), n ∈ N, B(x, 1/2n )−U = ∅, yn ∈ B(x, 1/2n )− U . d(x, yn ) < 1/2n , yn ∈ h(n, x) ⊂ b(n, x) x ∈ h(n, yn ) ⊂ g(n, yn ) , yn ∈ b(n, x), yn → x, x ∈ g(n, yn ), yn → x, {yn } x. , yn U , U x. . 7.5.14 [183] . . T1 . ( 7.5.4) , 7.5.13 7.6 Nagata-Smirnov “ σ ” “ σ ”“ σ ”“”, “” (pointcountable base) . , Miščenko[294] “ T2 ” ( 7.6.1). Miščenko ( 7.6.1). “ T1 ”. Urysohn Miščenko . Miščenko , Miščenko , M. E. Rudin ( [97]), , “” “”. Miščenko , . 7.6.1 (Miščenko [294] ) A E . A , A E ( ). Vn (n ∈ N) A n E ( A n∈N Vn ). , n0 ∈ N Vn0 . k n0 A () A1 , A2 , · · · , Ak , SA1 A2 ···Ak Vn0 A1 , A2 , · · · , Ak . 7.6 p1 ∈ E, · 259 · Ap1 = {A ∈ A : p1 ∈ A} ( |Ap1 | ℵ0 ), Vn0 = SA . (7.6.1) A∈Ap1 (7.6.1), |Vn0 | > ℵ0 |Ap1 | ℵ0 , A1 ∈ Ap1 |SA1 | > ℵ0 . , E ⊂ A1 (, n0 = 1 Vn0 = Ap1 , |Vn0 | > ℵ0 |Ap1 | ℵ0 ). p2 ∈ E − A1 . Ap2 = {A ∈ A : p2 ∈ A} ( |Ap2 | ℵ0 ), SA1 = SA1 A . (7.6.2) A∈Ap2 (7.6.2), , A2 ∈ Ap2 |SA1 A2 | > ℵ0 , E ⊂ A1 ∪ A2 . , k < n0 , pk+1 ∈ E − ni=1 Ai Ak+1 ∈ Apk+1 |SA1 A2 ···Ak Ak+1 | > ℵ0 . , k = n0 − 1 , A A1 , A2 , · · · , An0 |SA1 A2 ···An0 | > ℵ0 . SA1 A2 ···An0 ⊂ Vn0 , SA1 A2 ···An0 ({A1 , A2 , · · · , An0 }) . . . 7.6.2 (Rudin) . X A , C X , A () C , A C A . . 7.6.3 (Rudin) T1 . X T1 B. {Cn }n∈N Cn ⊂ Cn+1 C = n∈N Cn X. x ∈ X, C1 = {x}. Cn , Bn = {B ∈ B : B ∩ Cn = ∅}. Bn F X − ∪F = ∅ , xF ∈ X − ∪F . Cn+1 Cn xF , Cn ⊂ Cn+1 . Cn , Bn ( B ), , Cn+1 . C = n∈N Cn , C , C X ( C = X). , x0 ∈ X − C, X T1 , X − {x0 } C , B X , U B () C x0 . U C , U () C , C , C , U ⊂ B , U . U C, U F0 . U C , Cn . F0 U , Cn ⊂ Cn+1 , n0 ∈ N F0 Cn0 , F0 ⊂ Bn0 . U x0 , X − ∪F0 = ∅. , Cn0 +1 X − ∪F0 xF0 , F0 Cn0 +1 (F0 C) . C X, X . . · 260 · 7 () T1 . X , ( 5.5.3, p ∈ X). X T0 , T1 . X − {p} X , X . p X, X . 7.6.2 7.6.1 [294] . T1 . Miščenko , “” “”. 7.6.1 (Miščenko [294] ) T2 . 7.6.1, T2 , Urysohn ( 4.3.1) . . Rudin . 7.6.1 X Y y ∈ Y, f −1 (y) . 7.6.2 [335] f : X → Y s (s-mapping), s . f : X → Y X Y s . B X , f , f (B) = {f (B) : B ∈ B} Y −1 . f (y) (y ∈ Y ) , f −1 (y) B ( 7.6.2), f (B) . . s . , 7.6.2, “ ”. 7.6.3 . 7.6.3 [335] s . s T0 4.4.4, Ponomarev “ T0 ” N (A) (), , , . U = {Uα }α∈A T0 X . N (A), N (A) A S = {(α1 , α2 , · · ·) : {Uαn }n∈N x ∈ X }. f : S → X f (α) = x, α = (α1 , α2 , · · ·), {Uαn }n∈N x . 4.4.4 f , f s , f −1 (x) (x ∈ X) . 7.6 · 261 · N (A) N (A) = n∈N An , An = A, A , , N (A) , S N (A) . U , x ∈ X U , f −1 (x) , ( 2.17). . Filippov[116] “ s ” 7.6.2, [75] , , , Burke Michael . 7.6.4 [75] Y Y P y ∈ Y y V , P P y ∈ (∪P )◦ , P ∈ P y ∈ P ⊂ V . . . Y P , Y . Φ = {F ⊂ P : F }. , Y , , y ∈ Y , {(∪F )◦ : F ∈ Φ, y ∈ (∪F )◦ , y ∈ ∩F } y . , {(∪F )◦ : F ∈ Φ} Y , (∪F )◦ . , F ∈ Φ, U (F ) = {A ⊂ (∪F )◦ : E F , A ⊂ (∪E )◦ }, V (F ) = (∪(U (F ) ∩ P))◦ . V = {V (F ) : F ∈ Φ} Y . V Y . y ∈ W, W Y . , F ∈ Φ ◦ E F , y ∈ / (∪E )◦ . , V (F ) ⊂ ∪U (F ) ⊂ (∪F )◦ ⊂ W . y ∈ V (F ). y ∈ (∪F )◦ , , S ⊂ P y ∈ (∪S )◦ , P ∈ S , y ∈ P ⊂ (∪F )◦ . E F , y ∈ P ⊂ (∪F )◦ y∈ / (∪E )◦ , P ⊂ (∪E )◦ . U (F ) , P ∈ U (F ). S ⊂ U (F ) ∩ P. (∪S )◦ ⊂ V (F ), y ∈ V (F ). y ∈ (∪F ) ⊂ W . V , y ∈ V (F ) F ∈ Φ . y ∈ V (F ), y ∈ A ∈ U (F ) ∩ P, P , y ∈ A A ∈ P . (∗) A ⊂ Y , A ∈ U (F ) F ∈ Φ . · 262 · 7 () n ∈ N, Φn = {F ∈ Φ : |F | = n}. A ∈ U (F ) F ∈ Φn . , A ∈ U (F ) Φn F , F Ψ , Ψ ⊂ Φn . R ⊂ P R ⊂ F , F ∈ Ψ . Ψ ∗ = {F ∈ Ψ : R F }, 0 |R| < n, F ∈ Ψ ∗ , A ∈ U (F ) R F . U (F ) , A ⊂ (∪R)◦ , y∈Ay ∈ / (∪R)◦ . E = Y − ∪R, y ∈ E. Y , y ∈ Z. F ∈ Ψ ∗ , y ∈ (∪F )◦ ( Z = {zn : n ∈ N} ⊂ E zn → y, y ∈ A ⊂ (∪F )◦ ). Z P ∈ F , P , Z P ∈ P . Z P0 ∈ P , P0 Ψ ∗ F . , P0 ∈ / R, P0 Z ∪R Z . R = R ∪ {P0 }, R R R ⊂ F F ∈ Ψ , R , (∗). V Y . 7.6.4 (Filippov [116] ) . . s f : X → Y X Y P = f (B), f s , 7.6.2 s , B X , P Y . y ∈ Y, W Y y , B B ⊂ f −1 (W ) B ∩ f −1 (y) = ∅ B , B ⊂ B, B f −1 (y). f , ◦ E ⊂ B , y ∈ (∪f (E )) . B ∈ E , f (B) ∈ f (E ), B ⊂ f −1 (W ) B ∩ f −1 (y) = ∅ y ∈ f (B) ⊂ W . 7.6.4 Y . . 7.6.5 T0 X, (i) X ; (ii) X s (iii) X (iv) X s [335] ; [116] s ; [287] . (i) ⇒ (ii), 7.6.3. (ii) ⇒ (iii) ⇒ (iv), ( 5.2.1). , 7.6.2, , 7.6.4 (iv) ⇒ (i). . s 6.6.1 Arhangel’skiı̌ MOBI . Y MOBI M φ1 , φ2 , · · · , φn , (φ1 ◦ φ2 ◦ · · · ◦ φn )(M ) = Y [42] . T1 , . 7.6 · 263 · 7.6.6 [145] f T1 X Y , y ∈ Y, f −1 (y) , Y . y ∈ Y , 7.6.3, f −1 (y) ; 7.6.1 3.5.9, f −1 (y) ( 6.6.1). f s . f . y ∈ Y X U f −1 (y), f , U U f −1 (y), f −1 (y) ⊂ ∪U , f , y ∈ f (∪U )◦ . f . 7.6.4, Y . . 7.6.6 . , ( 5.2.1) T1 . Filippov . 7.6.1 [115] T1 . “ T1 ( meta ) ”[21] , . MOBI MOBI1 MOBI , T1 . Chaber[87] T1 MOBI1 . , 7.6.6 MOBI1 . 7.6.2 MOBI1 . Miščenko ( 7.6.1) “” , ( T1 ) . 7.6.2 [286] X U T1 (T1 -separating), x, y ∈ X (x = y), U ∈ U x ∈ U y ∈ / U ( x ∈ U ⊂ X − {y}). ℵ1 ( 4.1.7 ). X ℵ1 , X ℵ1 , . 7.6.5 ℵ1 . U ℵ1 X . X {xα : α < κ} xα ∈ / β<α st(xβ , U ) X = α<κ st(xα , U ), {{xα } : α < κ} X . , x ∈ X, β < κ x ∈ st(xβ , U ), x st(x, U ) {{xα } : α < κ} . X ℵ1 , ( 6.6.13 1), |κ| < ℵ1 , U , {U ∈ U : α < κ xα ∈ U } U . . 7.6.7 [201] T1 T2 X . · 264 · 7 () X Gδ , 7.3.9 . 2 X Gδ X ∆ = {(x, x) : x ∈ X} X 2 Gδ . , X 2 T1 , U . V = {∪U : U ⊂ U ∆ }. Miščenko ( 7.6.1), V , ∆ = ∩V . , ∆ ⊂ ∩V ( , X = ∅ , V = ∅). ∆ ⊃ ∩V . p ∈ X 2 − ∆. p ∈ /V ∪U , p ∈ / ∩V . q ∈ ∆, U T1 , Uq ∈ U , q ∈ Uq ⊂ X 2 − {p}, {Uq : q ∈ ∆} ∆ p. ∆ X, ∆ , ℵ1 . 7.6.5, {Uq : q ∈ ∆} , / ∪U ∈ V , p∈ / ∩V . . U ( ∆ ). ∆ ⊂ ∪U , p ∈ [201] Ishii Shiraki T1 T2 , M . [76], [171], [259], [391] . 7.1[215] 7.2 7 ℵ1 Moore . , F = n∈N st(F, Un ), {Un }n∈N , . X T2 X 2 , X Gδ ; Gδ 7.3 . 7.4 Bennett Lutzer [45] ( 6.4) θ . 7.5 w∆ ( 7.2.1) , xn ∈ st(x, Un ) , {xn } x, {st(x, Un )}n∈N x , . 7.6 T2 θ w∆ . 7.7 M [317] 7.8 . T2 X M X T2 . 7.9[114] 7.10 Čech Čech . 7.2.3 (iii) n∈N st(x, Un ) = n∈N st(x, Un ) (iii ) n ∈ N n ∈ N st(x, Un ) ⊂ st(x, Un ). 7.11 A X Čech , A X Gδ . 7.12 Čech Gδ Čech . X Čech T2 Gδ . 7.13 M . T2 Gδ p . 7 · 265 · 7.14[324] (i) σ σ ; (ii) σ σ ; (iii) X Xn (n ∈ N) , Xn σ (σ ) , X σ (σ ) [62] 7.15 [287] 7.16 . , Moore = σ + w∆ . {An }n∈N X , A = n∈N An . (i) A , {An }n∈N A ; (ii) xn ∈ An (n ∈ N), {xn } A ω ; (iii) xn ∈ An (n ∈ N), {xn } X ω ; (iv) {Kn }n∈N , Kn ⊂ An (n ∈ N), n∈N K n = ∅. (i) ⇒ (ii) ⇒ (iii) ⇒ (iv). n∈N An = n∈N An , [312] Nagami . Σ X Σ (Σ-net) {Fi }i∈N K1 ⊃ K2 ⊃ · · · , x ∈ X, Ki ⊂ C(x, Fi ) = ∩{F : x ∈ F ∈ Fi } (i ∈ N), i∈N Ki = ∅. C(x) = i∈N C(x, Fi ), C(x) . X Σ , X Σ Nagami 7.3.14 Σ∗ [217] Σ θ . 7.18 7.19 U =U −◦ Michael 7.3.4. [59] 7.17 . . (regular open set) (regular closed set). U , . F , F = F ◦− . ◦ (i) F , F ; U , U − ; (ii) () () ; (iii) U, V , U ⊂ V U − ⊂ V − ; (iv) F, H , F ⊂ H F ◦ ⊂ H ◦ ; (v) , (vi) () (). Sorgenfrey ( 2.3.3) , M3 [197] . 7.20 7.21[187] 7.4.7 (∗) M3 ⇒ σ. [187] 7.4.5 (i) (ii) ⇒ 7.4.7 [133] 7.22 7.23 7.24 f X α ∈ A, Uα mapping). ; 7.25[133] Y . , X U = {Uα }α∈A , Y f (Uα ), f (locally homeomorphic f T2 X ; (ii) f (∗). Y k , (i) f . X , U = {Uα }α∈A X , Uα (α ∈ A) M1 , X M1 . · 266 · 7 7.26[445] X T1 . , f 7.27 () f : X → Y y ∈ Y, f −1 (y) . Heath-Junnlia ( 7.4.12) Z, Y , Z, Y ∈ P . 7.28[360] . [97] σ , ( 7.29 [97] 7.30 7.6.3). T2 . 7.31 Michael ( 5.4.1) . Čech [103] . 7.32[189] T1 X (p, C) H, C p ∈ X − C, H(p, C) (i) p ∈ H(p, C) ⊂ X − C; (ii) D p ∈ / C ⊃ D, H(p, C) ⊂ H(p, D); (iii) p, q ∈ X p = q, H(p, {q}) ∩ H(q, {p}) = ∅. 7.33 (i) g [183] n ∈ N, {p, xn } ⊂ g(n, yn ), {xn } p [197] w∆ n ∈ N, {p, xn } ⊂ g(n, yn ), {xn } (ii) 7.34 X N . ; . (i) X T1 ; (ii) X k ; (iii)[179] X d X {xn } xn → x, d(x, xn ) → 0. 7.35 {xn } X β (β-space[196] ), g n ∈ N, p ∈ g(n, xn ), . 7.33 w∆ ( 7.4.3) ⇒ β. w∆ ⇒ β. g [396] (i) X β ; (ii) X U , X {Fn (U )}n∈N (1) Fn (U ) ⊂ U , (2) V , U ⊂ V ⇒ Fn (U ) ⊂ Fn (V ), (3) {Un }n∈N X n∈N Un = X, n∈N Fn (Un ) = X; (iii) X F , X {Un (F )}n∈N (1) Un (F ) ⊃ F , (2) H , F ⊂ H ⇒ Un (F ) ⊂ Un (H), (3) {Fn }n∈N X n∈N Fn = ∅, n∈N Un (Fn ) = X. , β [197] ( 6.1.22). [396] β [242] β [197] Σ β . [196] , = β + G∗δ . 7.36 7.37 7.38 7.39 7.35∼ 7.39 , ! . . , β k ( 7.4.1). . β 7 7.40[197] · 267 · X γ (γ-space), g n ∈ N, yn ∈ g(n, p), xn ∈ g(n, yn ), {xn } p (i) γ ; (ii) β, γ T1 . . 8 () 8.1 ℵ0 7.3 σ ( 7.3.1) Nagata-Smirnov “” “”, “” , “” ( 3.1.2). k , “” “” ( 8.1.1), k k , “network” 1.4 “net” . 8.1.1 [328] X P X k ( k , k-network), X K U K ⊂ U , P P K ⊂ ∪P ⊂ U . X ℵ0 (ℵ0 -space [284] ) (ℵ (ℵ-space)), X k (σ k ). , k , k (closed k-network). P, , ℵ0 “ P ∈ P K ⊂ P ⊂ U ”. Michael [284] ℵ0 , P (pseudo-base), ℵ0 . 8.1.1 . ℵ0 , () ℵ0 . 8.1.1 [284] . ℵ0 , Lindelöf , , Gδ , . , ℵ0 G∗δ . 8.1.2 [284] ℵ0 , . . ℵ0 ℵ0 . X = n∈N Xn , Xn (n ∈ N) ℵ0 , k An . , X . m ∈ N, m Pm = An × Xn : An ∈ An , n m , n=1 Pm X . P = P X k . n>m m∈N Pm . , 8.1 ℵ0 · 269 · X K U K ⊂ U . x ∈ K, n∈N Un (x) x ∈ n∈N Un (x) ⊂ U , n ∈ N, Un (x) = Xn . K , K . K⊂ Un,1 ∪ n∈N Un,2 ∪ · · · ∪ n∈N Un,k ⊂ U. n∈N X T2 K , ( 3.7), X {Ki : i = 1, 2, · · · , k} K= k Ki ⊂ Ki , i=1 Un,i (i k), n∈N i k, n ∈ N, Un,i = Xn . i k. n ∈ N, X Ki n Xn Kn,i , pn (Ki ) = Kn,i , Kn,i Un,i . An Xn k , An An,i Kn,i ⊂ ∪An,i ⊂ Un,i . n > ni Un,i = Xn . n i Qi = An × Xn : An ∈ An,i , n>ni n=1 Qi Pni ⊂ P , Ki ⊂ Kn,i ⊂ ∪Qi ⊂ n∈N Un,i . n∈N k i=1 Qi P , K= k i=1 Ki ⊂ k (∪Qi ) ⊂ i=1 k i=1 Un,i ⊂ U. n∈N , P X k . . 8.1.1 [284] k . f : X → Y k P X Y , f (P) = {f (P ) : P ∈ P} Y k . C, U Y , C ⊂ U . f , X K f (K) = C, K ⊂ f −1 (U ), P P K ⊂ ∪P ⊂ f −1 (U ), C ⊂ f (∪P ) ⊂ U , f (∪P ) = ∪f (P ), f (P ) = {f (P ) : P ∈ P } f (P) . . · 270 · 8 () k . 8.1.3 [284] ℵ0 . f : X → Y ℵ0 X Y , 8.1.1, X Lindelöf , T2 , . f , Y , . 6.6.2, f , X k , 8.1.1, Y k . . ℵ0 Lindelöf , ℵ0 , 5.5.5 ℵ0 . 8.1.2 [284] X r (r-space), x ∈ X {Un (x)}n∈N , xn ∈ Un (x), {xn } . x r (r-sequence). 8.1.4 [284] ℵ0 X, r , X . X P, {P ◦ : P ∈ P} (P ◦ P ) X , X . , x ∈ X X U x ∈ U , P ∈ P x ∈ P ◦ ⊂ U , P U {P1 , P2 , · · · , Pn , · · ·}. X , x V , V ⊂ U , X r , x r {Un (x)}n∈N , Un (x) ⊂ V , n ∈ N. , Un (x) − Pn = ∅, xn ∈ Un (x) − Pn . A = {xn : n ∈ N}, r , A C , C , A ⊂ C, A , A ⊂ V ⊂ U . P , Pn A ⊂ Pn ⊂ U , xn ∈ / Pn . . r , () ℵ0 . 8.1.5 [284] X , (i) X ℵ0 k ; (ii) X . (i) ⇒ (ii). X ℵ0 k , F X k , . N = F ω , F , N , N {Fn } = (F1 , F2 , · · ·), Fn ∈ Fn (= F ). {Fn }, X x Fn , x ∈ n∈N Fn . {x} = n∈N Fn . {Fn }n∈N x ( 7.3.21 ). M , M ⊂ N. f : M → X, x {Fn }n∈N x ∈ X. , f ( 4.4.4). f M X 8.1 ℵ0 · 271 · . f , A ⊂ X , f −1 (A) M . X k , K K ∩ A . K σ ( k ), ( 7.3.13), x ∈ K − A an ∈ K ∩A an → x ( 2.3.1). m ∈ N, {x} ∪ {an : n m} , Zm . Zm F . F , F ∈ F F ⊃ Zm . F {Gn }n∈N . x Zm . F k , Gn , {Gn }n∈N x , {Gn } ∈ M f ({Gn }) = x ∈ A, {Gn } ∈ f −1 (A). , {Gn } M Bm = {{Fn } ∈ M : Fi = Gi , i m}, f (Bm ) = im Gi , m ∈ N [ 4.4.4 (4.4.11) ]. F , m ∈ N, im Gi ∈ F , Gi (i ∈ N) {an } , A ∩ ( im Gi ) = ∅, f −1 (A) ∩ Bm = ∅, {Gn } ∈ f −1 (A). f −1 (A) M . (ii) ⇒ (i). f : M → X M X . X k [ k , k ( 3.4.8)], X ℵ0 . B M . f (B) X k . , X K U K ⊂ U , K C = {C ∈ f (B) : C ⊂ U } , C {Cn }, xn ∈ K − in Ci . K , σ , , {xn } , , xn → x ∈ K x = xn . A = {xn : n ∈ N} X, f , f −1 (A) M . z ∈ f −1 (A)−f −1 (A), z ∈ f −1 (K) ⊂ f −1 (U ). B ∈ B z ∈ B ⊂ f −1 (U ), f (B) ∈ C . M z ∈ f −1 (A) − f −1 (A), f −1 (A) {zi } z. B , j ∈ N, i > j zi ∈ B, f (zi ) ∈ f (B), f (B) xn , xn . . 8.1.6 [284] X , (i) X ℵ0 ; (ii) X . (i) ⇒ (ii). ℵ0 X k F . 8.1.5 (i) ⇒ (ii) M f : M → X. f . K ⊂ X , K F , · 272 · 8 () {Fn }, L= {Fn } ∈ n∈N Fn F Fn : n∈N Fn ω () . ∩ K = ∅ . n∈N {Fn } ∈ L, ( n∈N Fn ) ∩ K = ∅, x ∈ ( n∈N Fn ) ∩ K. U x , K , K W x ∈ W ⊂ W ⊂ U ∩ K. F X k , F F F W ⊂ ∪F ⊂ U, K − W ⊂ ∪F ⊂ X − {x}. Fx = F ∪ F , Fx F , K ⊂ ∪Fx st(x, Fx ) ⊂ ∪F ⊂ U , Fx Fn , Fn ⊂ U . , {Fn }n∈N x , {Fn } ∈ N f ({Fn }) = x ∈ K. L ⊂ M , f (L) ⊂ K. , x ∈ K, {Fn } K , Fn ∈ Fn x ∈ Fn (n ∈ N). x ∈ ( n∈N Fn ) ∩ K, {Fn } ∈ L, , f ({Fn }) = x, K ⊂ f (L). f (L) = K. {Hn } ∈ n∈N Fn − L, ( n∈N Hn ) ∩ K = ∅, K Hn ∩ K (n ∈ N) , m ∈ N ( nm Hn ) ∩ K = ∅ ( 3.1.1). B= {Fn } ∈ Fn : Fi = Hi , i m , n∈N B {Hn } n∈N Fn , . n∈N Fn B ∩ L = ∅. L , f . (ii) ⇒ (i). 8.1.1 8.1.3 [284] . . cosmic (cosmic space). , ℵ0 cosmic , cosmic σ . , cosmic , . 8.1.7 [284] X , (i) X cosmic ; (ii) X . (i) ⇒ (ii). (X, τ ) F . F B, B , X τ B (X, τ ) . B τ , τ , (X, τ ) , B, (X, τ ) , (X, τ ) (X, τ ) ( τ ⊃ τ ). 8.1 ℵ0 · 273 · (ii) ⇒ (i). . . [284] cosmic 8.1.7, Continuous-images Of Separable Metrics. Michael ℵ0 , 2.1 , 2.1.4, γ∈Γ Xγ , . . 3.6 , 3.6.2 A , I = [0, 1] , I A |A| [0, 1] , A , |A| q ∈ I A q = {xα }α∈A , xα ∈ [0, 1], q A I A I , . , I A , . , X Y X, Y f W (x, U ) = {f ∈ Y X : f (x) ∈ U }, x ∈ X, U Y. (topology of pointwise convergence) Y X W (x, U ) , W (x, U ) . , “ ” (fine), [124] (compact-open topology), W (x, U ) x C ( k ). W (C, U ) = {f ∈ Y X : f (C) ⊂ U }, C X , U Y. W (C, U ) , C . W (C, U ) . {x} , , . X C (X, Y ). Y , ( 8.20∼ 8.24) , . 8.1.2 [12] C (X, Y ) Y . . Y C (X, Y ) ( 8.23). . Y X T1 , C (X, Y ) T1 . f ∈ C (X, Y ), f C (X, Y ) , C . f ∈ W (C, U ), C X , U Y , W (C, U ) f C (X, Y ) . f ∈ W (C, U ) ⇒ f (C) ⊂ U, f (C) Y . Y , Y · 274 · 8 () V f (C) ⊂ V ⊂ V ⊂ U ( 3.1.5). C f ∈ W (C, V ) ⊂ W (C, V ) ⊂ W (C, V ) ⊂ W (C, U ). C W (C, U ) ( 8.22, “ −C ” C ). . ( 3.6.4). 8.1.3 [12] C X T2 , C (X, Y ) × C → Y e : (f, x) → f (x) . x ∈ C, U Y (f, x) ∈ e−1 (U ), f ∈ C (X, Y ), f (x) ∈ U . C ( 3.4.3) f , x C N f (N ) ⊂ U , f ∈ W (N, U ), W (N, U ) f C (X, Y ) , W (N, U ) × N (f, x) C (X, Y ) × C e−1 (U ). e : (f, x) → f (x) . . F ⊂ C (X, Y ) A ⊂ X, W (C, V ) F (A) = {f (x) : f ∈ F x ∈ A}, F (A) = e(F, A). 8.1.4 X T2 . X xn → x K({x}) ⊂ U , n ∈ N, K({xn }) ⊂ U , K ⊂ C (X, Y ), U Y . , fn ∈ K, fn (xn ) ∈ / U . K , {fn } f ∈ K. C = {x} ∪ {xn : n ∈ N}, C . f (x) ∈ U , 8.1.3 e : (f, x) → f (x) . . 8.1.8 [284] X, Y ℵ0 , C (X, Y ) ℵ0 . 8.1.2 C (X, Y ) . C (X, Y ) k . 1. X . X ℵ0 , 8.1.6, M f : M → X. Φ : C (X, Y ) → C (M, Y ) Φ(g) = g ◦ f, g ∈ C (X, Y ). Φ (f Φ −1 ). , C (M, Y ) ℵ0 , ℵ0 ( 8.1.2), C (X, Y ) ℵ0 , 1. A ⊂X B ⊂ Y, W (A, B) = {f ∈ C (X, Y ) : f (A) ⊂ B}. 8.2 ℵ · 275 · B X , Q Y k , . P = {W (B, Q) : B ∈ B, Q ∈ Q}. 2. K ⊂ W (C, U ), K C (X, Y ) , C X U Y , P ∈ P, K ⊂ P ⊂ W (C, U ). 2, , B ∈ B 2 . X V ⊃ C Q ∈ Q K(V ) ⊂ Q ⊂ U . C ⊂ B ⊂ V K ⊂ W (B, Q) ⊂ W (C, U ). Q ∈ Q Q ⊂ U {Qn }. V Q , xn ∈ X D(xn , C) = inf{d(xn , x) : x ∈ C} < 1/2n , d X / in Qi (Q ). C , {xn } , fn ∈ K fn (xn ) ∈ . , xn → x ∈ C. K ⊂ W (C, U ), K({x}) ⊂ U , 8.1.4, n ∈ N, K({xn }) ⊂ U . A = {x} ∪ {xn : K({xn }) ⊂ U }, A , K(A) ⊂ U . 8.1.3, K(A) , K(A) ⊂ Q ⊂ U Q ∈ Q . Q Qm , K(A) ⊂ Q fn (xn ) ∈ / Q n m , 2. 3 8.1.8 . 3. P 2 , P P̂ C (X, Y ) k ( k ). W C (X, Y ) , W (C, U ) . 2 K ⊂ W ∈ W , K C (X, Y ) , P̂ ∈ P̂ K ⊂ P̂ ⊂ W . 3 ( , C (X, Y ) ). H ⊂ U, H, U C (X, Y ) , H ( ) , W ∈ W W ⊂ U ( 3.7). . 8.2 ℵ Michael [284] ℵ0 , O’Meara [328] ℵ k ( σ k ℵ ), σ k [245] ( σ ) T2 ( 8.10), ℵ k , ℵ0 . σ . k , k , ℵ , ℵ σ , G∗δ ( 7.3.1 7.3.12). · 276 · 8 8.2.1 [328] ℵ . () ℵ , ℵ ℵ . 8.1.2 ℵ0 , 7.3.3 σ ℵ , σ . ℵ 7.3.6 , ℵ σ . . 8.2.1 [121] X (F1 , F2 ) F = {(F1 , F2 )}, F1 F1 ⊂ F2 , k (pair-k-network), X K U ⊃ K, F () (F1(i) , F2(i) ), i n, K ⊂ ni=1 F1(i) ⊂ n (i) i=1 F2 ⊂ U . F ( 7.4.1), F ⊂ F , ∪{F1 : (F1 , F2 ) ∈ F } ⊂ ∪{F2 : (F1 , F2 ) ∈ F }. 8.2.2 [121, 139] k . 7.5.1). X k X T1 σ (X, T ) k , U → {Un } X k Fn = {(Un , U ) : U ∈ T }, F = ( Fn , n∈N Un . X K U ⊃ K, n ∈ N K ⊂ Un ⊂ U , (Un , U ) ∈ Fn . F k . n ∈ N, Fn ⊂ Fn , V = ∪{U : (Un , U ) ∈ Fn }. U ⊂ V ⇒ Un ⊂ Vn , ∪{Un : (Un , U ) ∈ Fn } ⊂ Vn , Vn . ∪{Un : (Un , U ) ∈ Fn } ⊂ Vn ⊂ V = ∪{U : (Un , U ) ∈ Fn }. Fn . F = n∈N Fn σ k . , (X, T ) σ k F = n∈N Fn , Fn = {(F1 , F2 )} , F1 , F1 ⊂ F2 . n ∈ N, U ∈ T , Un = ∪{F1 : (F1 , F2 ) ∈ Fn , F2 ⊂ U }, (8.2.1) 8.2 ℵ · 277 · Un . Fn , Un ⊂ ∪{F2 : (F1 , F2 ) ∈ Fn , F2 ⊂ U } ⊂ U. x ∈ U , {x} , k , m ∈ N (F1 , F2 ) ∈ Fm x ∈ F1 ⊂ F2 ⊂ U . (8.2.1) x ∈ Um , U = n∈N Un . , (8.2.1) U ⊂ V Un ⊂ Vn . U → {Un } X . k . , Fn ⊂ Fn+1 (n ∈ N), K ⊂ U . k , n0 ∈ N Fn 0 ⊂ Fn0 K ⊂ ∪{F1 : (F1 , F2 ) ∈ Fn 0 } ⊂ ∪{F2 : (F1 , F2 ) ∈ Fn 0 } ⊂ U. (8.2.1), K ⊂ Un0 . U → {Un } k , X k . . 8.2.1 [270] ℵ k . σ k ⇒ σ k ⇒ σ k , ℵ k . . k ( 8.2.2) Fréchet k T1 , , Lutzer “ k T1 ” ( 7.5.5 ), ⇒ Fréchet ( 2.3.1 ). 8.2.3 [148, 243] Fréchet k T1 . ( 7.5.9), k , Fréchet k T1 X . 8.2.2, k X σ k F = n∈N Fn , Fn . H, K X , ⎧ ⎫ ⎨ ⎬ Un = ∪ F1 : (F1 , F2 ) ∈ Fi , F2 ∩ K = ∅ − ⎩ ⎭ in Fi , F2 ∩ H = ∅} (8.2.2) ∪ {F1 : (F1 , F2 ) ∈ in D(H, K) = ( n∈N Un )◦ . D X ( 7.5.2). , H ⊂ H , K ⊃ K , H , K X , (8.2.2) D(H, K) ⊂ D(H , K ). H ⊂ D(H, K). , H ⊂ D(H, K), ◦ x ∈ H − (D(H, K) ∪ K) = H − Ui ∪K i∈N · 278 · ⊂ (X − K) ∩ X− Ui 8 () ∩H =X − K∪ i∈N Ui ∩ H. i∈N X Fréchet , {xn } ⊂ X − (K ∪ ( i∈N Ui )) xn → x. X {x} ∪ {xn : n ∈ N} ⊂ X − K (), F k , F (F1(i) , F2(i) ) (i m), (i) (i) {x} ∪ {xn : n ∈ N} ⊂ F1 ⊂ F2 ⊂ X − K. im im i0 m {xn } {xnj }, (i ) (i ) {xnj } ⊂ F1 0 ⊂ F2 0 ⊂ X − K. (8.2.3) F2(i0 ) ∩ K = ∅. , k ∈ N, (F1(i0 ) , F2(i0 ) ) ∈ Fk . x ∈ H, ⎧ ⎫ ⎨ ⎬ x ∈ X − ∪ F2 : (F1 , F2 ) ∈ Fi , F2 ∩ H = ∅ ⎩ ⎭ ik ⊂X −∪ ⎧ ⎨ ⎩ F1 : (F1 , F2 ) ∈ ik ⎫ ⎬ Fi , F2 ∩ H = ∅ . ⎭ n0 ∈ N, j n0 ⎧ ⎫ ⎨ ⎬ xnj ∈ X − ∪ F1 : (F1 , F2 ) ∈ Fi , F2 ∩ H = ∅ ⎩ ⎭ ik ⎫ ⎧ ⎬ ⎨ Fi , F2 ∩ H = ∅ . ⊂ X − ∪ F1 : (F1 , F2 ) ∈ ⎭ ⎩ ik , (8.2.3), (8.2.2) ⎧ ⎫ ⎨ ⎬ (i ) xnj ∈ F1 0 − ∪ F1 : (F1 , F2 ) ∈ Fi , F2 ∩ H = ∅ ⊂ Uk . ⎩ ⎭ ik Uk xn , {xn } . H ⊂ D(H, K). D(H, K) ⊂ X − K. , , D(H, K) ⊂ X − K, x ∈ D(H, K) ∩ K ∩ (X − H) ⊂ D(H, K) − H ∩ K. . 8.2 ℵ · 279 · X {xn } ⊂ ( n∈N Un )◦ − H xn → x. {xn } {xnj } (F1 , F2 ) ∈ Fm xnj ∈ F1 , F2 ∩ H = ∅, j ∈ N. Uk ⊂ X − F1 , k m. k m , xnj ∈ / Uk . xnj ∈ i n(1) fn(2) (P2 ) ⊂ R2 . , fn(3) n(3) > n(2) fn(3) (P3 ) ⊂ R1 fn(4) n(4) > n(3) fn(4) (P4 ) ⊂ R2 , · · ·. , Pi , Rj 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, · · · . R1 Rj ( Rj ), R1 . fi = fn(i) , xi ∈ Pi fi (xi ) Rj , Rj fn(i) Pi , {fi } F f0 , P (x) S x , {xi } x . · 288 · 8 () {fi (xi )} f0 (x) ( 8.1.3), {fi (xi )} U . n Rk ∈ R(x) fi (xi ) ∈ Rk i n , {fi } {xi } , m > n fm (xm ) ∈ / Rk . . x ∈ C, l(x), i(x) j(x), Fl(x) ⊂ (Pi(x) , Rj(x) ) ⊂ (x, U ). {Pi(x) : x ∈ C} C, {Pi(x1 ) , Pi(x2 ) , · · · , Pi(x }, r) m = max1tr {l(xt )}, Fm ⊂ 1tr (Pi(x , Rj(xt ) ) ⊂ (C, U ). t) [P, R] C (S, Y ) σ cs . Y , 8.1.2, C (S, Y ) , C (S, Y ) cs-σ . . Guthrie , Foged ( 8.3.2) , O’Meara [330] , Michael [289] ( 8.2 ). 8.3.4 [120] X ℵ0 , Y ℵ , C (X, Y ) ℵ . 8.4 σ k Lašnev Lašnev [240, 241] . . Foged [122] Lašnev . Lašnev Foged ( 8.4.1) , Burke, Engelking Lutzer [73] σ . 8.4.1 P X , P P ∩P . , P P {Pα : α ∈ A} Gα ⊂ ∩Pα (α ∈ A) α∈A Gα . X , {zn } ⊂ / {zn }. α∈A Gα zn → x ∈ X − α∈A Gα , α(n) ∈ A zn ∈ Gα(n) , x ∈ , α(n) . , m ∈ N, nm Pα(n) , {nm } P {Pm } [363] Pm ∈ Pα(n − {Pk : k < m}, m) Pm , znm ∈ Pm . P x∈ / {znm : m ∈ N}, . . 8.4 σ k Lašnev · 289 · 8.4.2 [122] P T1 X , {zn } X − {x} x, m ∈ N, {zn : n m} ∩ P = ∅ P ∈ P . , {zn } {znm } P {Pm : m ∈ N} znm ∈ Pm , m ∈ N. P X T1 {znm : m ∈ N} , . . 8.4.3 [122] X T2 , Fréchet , k P = n∈N Pn , Pn ⊂ Pn+1 . U , Z = {zn : n ∈ N} x ∈ U − Z, n ∈ N Z Int(∪{P ∈ Pn : P ⊂ U }). m ∈ N, Pm = {P ∈ Pm : P ⊂ U }. , Z {znm } znm ∈ U − Int(∪Pm ) ⊂ U − ∪Pm (m ∈ N). X Fréchet , znm , {znm ,k } ⊂ U −∪Pm znm ,k → znm . x ∈ {znm ,k : m, k ∈ N}. X Fréchet , x ∈ / Z T2 , x, Z Z {znm ,k : m, k ∈ N} Z Z = {znmi ,ki : i ∈ N} (mi < mi+1 ; i ∈ N). x∈ / Z ⊃ {znm : m ∈ N}, Z x. P k , m ∈ N Z , mj > m , znmj ,kj ∈ U − ∪Pm . , ∪Pm . 8.4.1 (Foged [122] ) X Lašnev X T2 , Fréchet σ k . . T2 , Fréchet X k P = n∈N Pn , Pn , 8.4.1, Pn . , Pn ⊂ Pn+1 (n ∈ N). Rn (P ) = P − Int(∪{Q ∈ Pn : P ⊂ Q}), P ∈ Pn ; (8.4.1) Rn = {Rn (P ) : P ∈ Pn }. (8.4.2) 4 . 1. Z = {zn : n ∈ N} x ∈ X − Z, Rn∗ = {R ∈ Rn : R ∩ Z }. (8.4.3) U x Z Int(∪{P ∈ Pn : P ⊂ U }), Z Int(∪Rn∗ ) ∪Rn∗ ⊂ U . · 290 · 8 () V = Int(∪Pn ) − ∪{Q ∈ Pn ∪ Rn : Q ∩ Z }. (8.4.4) 1 (8.4.4) Z ( 8.4.2), Z V , Z Int(∪Rn∗ ) ∪Rn∗ ⊂ U . V ⊂ ∪Rn∗ . Z Int(∪Rn∗ ). y ∈ V , Pn y . , y ∈ Q ∈ Pn , Q ∩ Z , 8.4.2, Pn Q , Pn y . P (y) = ∩{Q ∈ Pn : y ∈ Q}, . Pn , P (y) ∈ Pn , y∈ / ∪{Q ∈ Pn : P (y) ⊂ Q}. (8.4.1), (8.4.2), y ∈ Rn (P (y)) ∈ Rn , Rn (P (y)) ∩ Z . (8.4.3), Rn (P (y)) ∈ Rn∗ , y ∈ Rn (P (y)) ⊂ ∪Rn∗ . V ⊂ ∪Rn∗ , Z Int(∪Rn∗ ). ∪Rn∗ ⊂ U . Rn (P ) ∈ Rn∗ , Rn (P ) ⊂ P , {Q ∈ Pn : Q ⊂ U } Q P ⊂ Q, Rn (P ) ⊂ P ⊂ Q ⊂ U. ∪Rn∗ ⊂ U . , 1 (8.4.1) ,Z Int(∪{Q ∈ Pn : Q ⊂ U }) ⊂ Int(∪{Q ∈ Pn : P ⊂ Q}) ⊂ X − Rn (P ). Rn (P ) ∩ Z , (8.4.3) n ∈ N, . ∪Rn∗ ⊂ U . 1 . Rn = Rn ∪ {X − Int(∪Rn )} = {Rα : α ∈ In }. M = {σ = {σ(n)} ∈ n∈N In : {Rσ(n) }n∈N x ∈ X }. 8.4 σ k Lašnev · 291 · 7.3.21 . In (n ∈ N) , In (n ∈ N) . n∈N In , M . σ = {σ(n)} ∈ M , σ(n) ∈ In , Rσ(n) {Rα : α ∈ In } , {Rσ(n) }n∈N . f : M → X, f (σ) = x {Rσ(n) }n∈N x . 2. f (M ) = X. x , {x} ∈ Pn . (8.4.1) Rn ({x}) = {x}; x , Z X − {x} x, Rσ(n) ∈ Rn Rσ(n) ∩ Z , , Rσ(n) = X − Int(∪Rn ). , 8.4.2, x ∈ Rσ(n) , 8.4.3 1, {Rσ(n) }n∈N x . 2 . 3. f . U X , x ∈ U , σ = {σ(n)} ∈ M {Rσ(n) }n∈N x , n ∈ N Rσ(n) ⊂ U . M σ () B, B n σ n , f (B) ⊂ Rσ(n) ⊂ U . 3 . 4. f . F M , Z = {zn : n ∈ N} f (F ) x ∈ X − Z. n ∈ N, σn ∈ F ∩ f −1 (zn ), σn ( zn ) M . S0 = N. m ∈ N, Sm ⊂ Sm−1 τ (m) ∈ Im . 8.4.2, i ∈ N R ∗ = {R ∈ Rm : R ∩ Z } : R ∩ {zn : n i} = ∅} ⊂ {R ∈ Rm , n i, Rσn (m) ∈ R ∗ . 8.4.2, Rσn (m) . σn (m) , Sm ⊂ Sm−1 n ∈ Sm , σn (m) . σn (m) τ (m), τ (m) = σn (m). τ = {τ (m)} f −1 (x). m ∈ N, zn ∈ Rσn (m) = Rτ (m) n ∈ Sm , x ∈ m∈N Rτ (m) . U X , x ∈ U , 8.4.3 1, n ∈ N Rτ (m) ∈ Rn Rτ (m) ⊂ U . {Rτ (m) }m∈N x , f (τ ) = x. nm ∈ Sm m ∈ N nm < nm+1 , {σnm } τ . , m k, nm ∈ Sk , σnm (k) = τ (k). τ ∈ F, x ∈ f (F ), f (F ) . . · 292 · 8 () , . Fréchet , ( 8.3); , ; ( 6.6.9), k . . 6.6.9 7.5.1, T2 ℵ , σ k . σ k ℵ ? [168, 249] Foged . , Foged , k Fréchet Lašnev . 8.4.4 [247] P X , P = {P : P ∈ P} X . P = {Pα }α∈A . P X , α ∈ A, Hα ⊂ P α , α∈A H α . x ∈ α∈A Hα − α∈A H α . , α ∈ A, Vα , Uα , x ∈ Vα , H α ⊂ Uα Vα ∩ Uα = ∅, Hα ⊂ Uα ∩ P α ⊂ Uα ∩ Pα . x ∈ ∪{Uα ∩ Pα : α ∈ A} = ∪{Uα ∩ Pα : α ∈ A}. β ∈ A, x ∈ Uβ ∩ Pβ , Uβ ∩ Pβ ∩ Vβ = ∅, . P X . 8.4.1 [122] X X σ k . 8.4.4 Foged , σ k Lašnev , Morita-Hanai-Stone ( 4.4.2), Lašnev . . 8.4.2 [329] X X σ k . 8.4.3 (Burke-Engelking-Lutzer [73] ) X X σ . σ X . , σ , x ∈ X Gδ , {x} = n∈N Gn , Gn . P x . x X , P , X . P , P = {Pn : n ∈ N}. D1 = P1 ∩ G1 , Dn = Dn−1 ∩ Pn ∩ Gn (n 2). 8.4 σ k Lašnev · 293 · P1 ∩ G1 x , x D1 − {x} . x Dn − Dn+1 (n ∈ N) , P x ∪{Dn − Dn+1 : n ∈ N} = D1 − {x} , . P . . ℵ , Foged 8.3.2 ℵ ; 8.4.1 Lašnev —— . BurkeEngelking-Lutzer [73] σ ( 8.4.3), Foged , σ k ℵ Foged . Junnila [225] ( 8.4.3), , Foged . 4.1.5 , (fan space) Sω1 . R () S = {0} ∪ {1/n : n ∈ N}. α < ω1 , Sα S. α<ω1 Sα , () Sω1 . α<ω1 Sα , , Sω1 Lašnev . Foged ( 8.4.1) Sω1 σ , k , 8.4.2 Sω1 ℵ . 8.4.1 [150] X P X cs∗ (cs∗ -network), X Z = {z} ∪ {zn : n ∈ N} (zn → z) U ⊃ Z, P ∈ P Z Z = {z} ∪ {zni : i ∈ N}, Z ⊂ P ⊂ U . , cs cs∗ , k cs∗ ( 8.14). 8.4.2 [251] Sω1 cs∗ , ℵ . a Sω1 , α < ω1 , Yα = Sα − {a}. Sω1 cs∗ P, {P ∈ P : a ∈ P α < ω1 Yα ∩ P = ∅} (8.4.5) {Pn : n ∈ N}. Pn , yn ∈ Pn − {a}, yn Yα , {yn : n ∈ N} Sω1 . V = Sω1 − {yn : n ∈ N}, V . a ∈ P ⊂ V , P ∈ P, P ∩ {yn : n ∈ N} = ∅, P ∈ / {Pn : n ∈ N}. (8.4.5) , P Yα . H = ∪{P ∈ P : a ∈ P ⊂ V }. (8.4.6) H , H Yα , β < ω1 Yβ ∩ H = ∅. · 294 · 8 () , {xn : n ∈ N} = V ∩ Yβ , xn → a. P cs∗ , {xni } P ∈ P {a} ∪ {xni : i ∈ N} ⊂ P ⊂ V . (8.4.6) , Yβ ∩ H = ∅, . Sω1 cs∗ . ℵ σ k ⇒ k ⇒ cs∗ , Sω1 ℵ . . , Sω1 k . 8.4.2, Sω1 k cs∗ , k cs . , βN ( 3.6.2), P = {{x} : x ∈ βN} βN cs , P βN k . , βN , P βN, βN , . 8.4.3 (Junnila-Yun [225] ) σ k X ℵ X Sω1 . 8.4.2). , ℵ , Sω1 ℵ ( . 8.4.5 [225] X T1 , σ , , X X = n∈N Xn Xn . F = n∈N Fn X σ , Fn . n ∈ N, Xn = {x ∈ X : {x} ∈ Fn }, Xn . x ∈ X, F , {F ∈ F : x ∈ F } = {Fk : k ∈ N}, Fk = Fn (k ∈ N), nk {Fk }k∈N x , k ∈ N Fk = {x}. , Fk , {xk } xk ∈ Fk xk = x, k ∈ N, {xk : k ∈ N} ∪ {x} X , . Fk Fn , x ∈ Xn . . 8.4.6 [327] F T1 X , K , K A (K − A) ∩ F = ∅ F ∈ F . . . 8.4.6 8.4.2 5.5.1 , 8.4.2 F , D = {x ∈ X : |(F )x | ω}, D . D . , (F )x = {F ∈ F : x ∈ F }. , ( 5.5.3) 8.4.2 8.4.6 T1 T0 . 8.4.7 [225] T2 X Sω1 . F X , x ∈ X F ∈ F F − {x} 8.4 σ k Lašnev · 295 · x. , a ∈ X F {Fα : α < ω1 } α < ω1 , Fα − {a} Yα = {yα,n : n ∈ N} yα,n → a. 8.4.2, F yα,n . {F ∈ F : F ∩ Yα = ∅} , {Yα : α < ω1 } , σ ( 6.1.3). ω1 , {Yα : α < ω1 } {Yα(β) : β < ω1 }, {Yα : α < ω1 } . F , X {a} ∪ ( α<ω1 Yα ) Sω1 , . . 8.4.8 [225] σ k F X Sω1 , D X , X σ H X K d ∈ K ∩ D, {H ∈ H : d ∈ IntK (K ∩ H)} d X . 8.4.4, X σ k F = n∈N Fn , Fn , Fn ⊂ Fn+1 . x ∈ X, F (x) = {F ∈ F : K ⊂ F x ∈ K − {x}}. (8.4.7) X σ ( 7.3.5), X ( 7.3.13). 8.4.7, F (x) , {∪F : F F (x) } ∪ {{x}} = {Fk (x) : k ∈ N}. d ∈ D n ∈ N, Gn (d) d , Gn (d) ⊂ X − ∪{F ∈ Fn : d ∈ / F }, Sn (d) = ∪{F ∈ Fn : F ∩ D = {d}}. Fn , {Gn (d) ∩ Sn (d) : d ∈ D} . n, k ∈ N, Hn,k = {Fk (d) ∩ Gn (d) ∩ Sn (d) : d ∈ D} . σ H = n,k∈N Hn,k . K ⊂ X, d ∈ K ∩ D, O d X . V d , V ⊂ O − (D − {d}). F k , F F K ∩ V ⊂ ∪F ⊂ O − (D − {d}). n ∈ N F ⊂ Fn , k ∈ N Fk (d) = ∪(F ∩ F (d)) ∪ {d}, · 296 · 8 () F ∈ F ∩ F (d) ⇒ d ∈ F , d ∈ Fk (d) ∩ Gn (d) ∩ Sn (d) ⊂ ∪F ⊂ O. d ∈ IntK (K ∩ Fk (d) ∩ Gn (d) ∩ Sn (d)) (8.4.8) . d ∈ IntK (K ∩V ) ⊂ IntK (K ∩(∪F )) F K ∩V X , d ∈ IntK (K ∩(∪(F )d )). (∪F )∩(D−{d}) = ∅, ∪(F )d ⊂ Sn (d), (F )d = {F ∈ F : d ∈ F }. , d ∈ IntK (K ∩ Sn (d)). d ∈ IntX Gn (d), d ∈ IntK (K ∩ Gn (d)). d ∈ IntK (K ∩ Fk (d)), (8.4.8) . F ∈ F , EF = X − F ∩ K − {d}, E = ∩{EF : F ∈ F d ∈ EF }, E d . F ∈ F , d ∈ EF , E ⊂ EF , K ∩ F ∩ E ⊂ K ∩ F ∩ EF ⊂ K ∩ F ∩ (X − (F ∩ K − {d})) ⊂ {d}; d∈ / EF , d ∈ F ∩ K − {d}, (8.4.7) F ∈ F (d). K ∩ (∪F ) ∩ E ⊂ ∪(F ∩ F (d)) ∪ {d} = Fk (d). d ∈ IntK (K ∩ (∪F )) d ∈ IntX E, d ∈ IntK (K ∩ Fk (d)). . 8.4.3 F = n∈N Fn X k , Fn , Fn ⊂ Fn+1 , n ∈ N. X Sω1 . Dn = {x ∈ X : |(Fn )x | ω} (n ∈ N). 8.4.6 8.4.5, Dn Dn = k∈N Dn,k , k ∈ N, Dn,k X Dn,k ⊂ Dn,k+1 . , n, k ∈ N, Hn,k X σ , 8.4.8 ( H = Hn,k D = Dn,k ). n ∈ N, Fn , X −Dn , X −Dn . n, k ∈ N, Sn,k = ∪{F ∈ Fk : F ∩ Dn = ∅} Fn,k = {F ∩ Sn,k : F ∈ Fn }, Fn,k X . σ ⎞ ⎛ ⎞ ⎛ P=⎝ Hn,k ⎠ ∪ ⎝ Fn,k ⎠ n,k∈N n,k∈N 8.4 σ k Lašnev · 297 · X k . K ⊂ O, O X , K . F F K ⊂ ∪F ⊂ O, n ∈ N F ⊂ Fn . 8.4.6 , K ∩ Dn , k ∈ N K ∩ Dn ⊂ Dn,k . 8.4.8, d ∈ K ∩ Dn , Hd ∈ Hn,k d ∈ IntK (K ∩ Hd ) Hd ⊂ O. K = K − ∪{IntK (K ∩ Hd ) : d ∈ K ∩ Dn }, K K ⊂ X − Dn (). F F K ⊂ ∪F ⊂ X − Dn . l ∈ N F ⊂ Fl , ∪F ⊂ Sn,l K ⊂ Sn,l . P = {Hd : d ∈ K ∩ Dn } ∪ {F ∩ Sn,l : F ∈ F }, P P , K ⊂ ∪P ⊂ O. . Sω1 cs∗ ( 8.4.2), k . . 8.4.4 [152] X ℵ X σ k k . 8.4.5 [261] X ℵ X σ k cs∗ . 8.3.1 cs ⇒ k . , σ σ . ? . . 8.4.4 [320] P T2 X σ cs∗ , P X σ k . K T1 F , F F K ( 5.5.1). P = n∈N Pn X σ cs∗ , Pn . X K, U ⊃ K n ∈ N, Pn = {P ∈ Pn : P ⊂ U }, Fn = ∪Pn . K Fn . , K {xn } xn ∈ K − in Fi . 8.3.1 (ii) ⇒ (i) ( T2 ), K ⊂ in Fi . 5.5.1, in Pi P K ⊂ ∪P ⊂ U . . cs k ( 8.4.2 ). , , cs . Junnila-Yun ( 8.4.3), σ k · 298 · 8 () ℵ . [249] “ σ cs ”? , 8.4.5. 8.4.9 [256, 431] Sω1 σ cs . Sω1 σ cs F . Sω1 ℵ Sω1 = {(1/n, α) : α < ω1 , n ∈ N} ∪ {(0, 0)}. . α < ω1 , S (α) = {(1/n, α) : n ∈ N}. F σ , 8.4.2, {F ∈ F : |S (0) ∩ F | = ω} F . , {F ∈ F : |S (0) ∩ F | = ω} . , α, 0 < α < ω1 , Fα ∈ F zα ∈ S (α) ∩Fα , α = β , Fα = Fβ . α, 0 < α < ω1 , S (0) ∪ S (α) , S (0) , S (α) , (0, 0). F cs , F1 ∈ F S (0) ∪ S (1) F1 , z1 ∈ S (1) ∩ F1 . , |S (0) ∩ F1 | = ω. α < ω1 , β < α (β > 0), Fβ ∈ F zβ ∈ S (β) ∩ Fβ |S (0) ∩ Fβ | = ω. , Sω1 − {zβ : β < α} (0, 0) ∈ Sω1 − {zβ : β < α}. Fα ∈ F S (0) ∪ S (α) Fα Fα ⊂ Sω1 − {zβ : β < α}. , |S (0) ∩ Fα | = ω, zα ∈ S (α) ∩ Fα . Fα ⊂ Sω1 − {zβ : β < α}, β < α, Fα = Fβ . {F ∈ F : |S (0) ∩ F | = ω} . . 8.4.5 [254, 431] X ℵ X σ cs . Foged ( 8.3.2) . . X σ cs F . 8.4.4, F X σ k . , X Sω1 ( , F |Sω1 Sω1 σ cs . 8.4.9 ). 8.4.3 X ℵ . . ℵ , Sω1 Lašnev () ℵ , ℵ . , ℵ ( 8.5). Lindelöf ℵ . 8.4.10 [246] f : X → Y X Y Lindelöf , f . K Y , f −1 (K) X Lindelöf ( 3.3.3). X , f −1 (K) . g = f |f −1 (K) , g T2 f −1 (K) K . 6.6.2, g , f −1 (K) C g(C) = K, C X f (C) = g(C) = K. f . . (0, 0) Sω1 8.4 σ k Lašnev · 299 · 8.4.6 [246, 380] f : X → Y ℵ X Y Lindelöf , Y ℵ . ℵ X σ k P, Y , f : X → Y Lindelöf . f (P) = {f (P ) : P ∈ P}, 8.4.10, f , f (P) Y σ k . 8.3.1 , Y ℵ . . 8.4.11 [390] f : X → Y X Y , f Lindelöf ( y ∈ Y, ∂f −1 (y) Lindelöf ) Y Sω1 . f Lindelöf , M Lindelöf g : M → Y ( 4.4.8 ). 8.4.6, Y ℵ . 8.4.3, Y Sω1 . , f Lindelöf , y ∈ Y , ∂f −1 (y) X Lindelöf , ∂f −1 (y) {xα : α < ω1 }. X , X {Dα }α<ω1 , xα ∈ Dα . f , {f (Dα )}α<ω1 Y . α < ω1 , V y Y , f −1 (V ) ∩ (Dα − f −1 (y)) = ∅, V ∩ (f (Dα ) − {y}) = ∅, y ∈ f (Dα ) − {y}. Y Fréchet ( 8.3), f (Dα ) − {y} y. 8.4.7 . . 8.4.6 [152, 246] (i) X Fréchet ℵ ; (ii) X Lindelöf . (i) ⇒ (ii). X Fréchet ℵ . Foged 8.4.1, X Lašnev , M f : M → X. X ℵ , X Sω1 . 8.4.11, f Lindelöf . A Lindelöf g : A → X ( 4.4.8 ). X Lindelöf . (ii) ⇒ (i). 8.4.6 Fréchet . . 4.4.1 () ℵ . ℵ . 8.4.1 ℵ . X = {(x, y) ∈ R2 : y 0}. X V · 300 · 8 () (i) y > 0, (x, y) X ; (ii) y = 0, (x, y) V (x, n) = {(t, s) ∈ X : t = x ± s, 0 s 1/n}, (n ∈ N). X V , Heath V [183] . , X . R × {0} , ( 2.2.3), X . X k , X , 7.5.5, X , X . X k , X ℵ ( 8.2.1). r ∈ R, Xr = {(x, y) ∈ R2 : y = |x − r|}, Xr X ( σ ), {Xr : r ∈ R} X . M = r∈R Xr , f : M → X ( 3.4.9 ), M f . ℵ . ( 4.4.3). [249] “ℵ ?” [431] . . k . Guthrie [173] cs , Siwiec [359] , cs . Michael ( 5.5.1) 8.4.2 [359] f : X → Y (sequence-covering), Y {yn } y ∈ Y , xn ∈ f −1 (yn ) (n ∈ N) x ∈ f −1 (y) {xn } x. , cs . 4.4.9 , . 8.4.12 [144] X Gδ . f : X → Y X Y , Y f . f , Y T1 . y ∈ Y V y , f , x ∈ f −1 (y) x U, y ∈ Intf (U ). X , X U x ∈ U ⊂ U ⊂ f −1 (V ), y ∈ Intf (U ) ⊂ f (U ), y ∈ Intf (U ) ⊂ Intf (U ) ⊂ f (U ) ⊂ V. Y . {yn } Y y ∈ Y , {yn } y . f , x ∈ f −1 (y) x U, y ∈ Intf (U ). X Gδ , {Ui }i∈N x {x} = i∈N Ui 8.4 σ k Lašnev · 301 · U i+1 ⊂ Ui , i ∈ N. i ∈ N, m(i) ∈ N n m(i) , yn ∈ Intf (Ui ), −1 Ui ∩ f (yn ) = ∅. m(i + 1) > m(i). {xj } −1 j < m(1), xj ∈ f (yi ); m(i) j < m(i + 1) , xj ∈ Ui ∩ f −1 (yj ). f , {xj } ( , {xj : j ∈ N} , {yj : j ∈ N} , ). E {xj } , E ⊂ U i , i ∈ N. E⊂ Ui = i∈N Ui = {x}. i∈N {xj } x , {xj } x . {xj } x, f . . 8.4.7 [144] f : X → Y ℵ X Y , Y ℵ . ℵ 8.4.12 . 8.4.5 Y ℵ . . , , f , cs . 8.4.7 [431] f : X → Y ℵ X , Y ℵ . ℵ . Y 8.4.8 [250] {Fα }α∈A X ( ) , Fα (α ∈ A) ℵ , X ℵ . ℵ ( 8.4.6) 5.5.7 . . ℵ . Sω1 , Sω1 8.4.1 . α < ω1 , Sα ℵ . α<ω1 Sα Sω1 q, q . {Sα : α < ω1 } α<ω1 Sα , {q(Sα ) : α < ω1 } Sω1 , q(Sα ) Sα , Sω1 ℵ . Sω1 ℵ , Sω1 ℵ ( 8.4.2). Sω1 , α < ω1 , Sα = {0} ∪ {xα,n : n ∈ N}. n ∈ N, Xn = {xα,n : α < ω1 }, Xn Sω1 , ℵ . Sω1 = {a} ∪ ( n∈N Xn ), a Sω1 , ℵ . ( 5.2.1), 8.4.7 . M. Sakai . · 302 · 8 () 8.4.8 (M. Sakai, 2007) f : X → Y ℵ X Y , Y ℵ . X ℵ , P = n∈N Pn X σ k , Pn , Pn ⊂ Pn+1 , n ∈ N. 7.5.1, f , f (P) = {f (P ) : P ∈ P} Y σ k . Junnila-Yun ( 8.4.3), , Y Sω1 . , Y Sω1 , {∞} ∪ {yα,n : α < ω1 , n ∈ N}, {yα,n } α ∞ . P {Fα }α<ω1 (i) {nα }α<ω1 ⊂ N α < ω1 , ∪{f −1 (yα,n ) : n nα } ⊂ ∪Fα ; P ∈ Fα , P ∩ (∪{f −1 (yα,n ) : n nα }) = ∅; (iii) α < β < ω1 , Fα ∩ Fβ = ∅. (ii) γ < ω1 α < γ nα ∈ N P Fα . α < γ, (i), ∪{f −1 (yα,n ) : n nα } Fα Fα ∩ P = ∅ P ∈ Fα . F = ∪{Fα : α < γ}, F X . n ∈ N, Qn = {P ∈ Pn : P ∩ F = ∅ P ∩ f −1 (yγ,k ) = ∅ k ∈ N }. , Qn ⊂ Qn+1 . Qn , {Pi }i∈N ⊂ Qn i = j Pi = Pj . {xi } xi ∈ Pi {f (xi )} {yγ,n }n∈N . Qn ⊂ Pn , {xi : i ∈ N} , {f (xi ) : i ∈ N} , . Qn . nγ ∈ N ∪{f −1 (yγ,n ) : n nγ } ⊂ ∪Qnγ , Fγ = Qnγ . , n ∈ N, f −1 (yγ,k ) ⊂ ∪Qn k ∈ N . kn ∈ N xn ∈ f −1 (yγ,kn ) − ∪Qn . kn < kn+1 , n ∈ N. f , {xn : n ∈ N} X . {xn : n ∈ N} , f −1 (∞) . , x0 {xn } , {f (xn )} {yγ,n }n∈N , f (x0 ) = ∞, x0 ∈ f −1 (∞). X ℵ , {x0 } Gδ , {Gi }i∈N {x0 } = i∈N Gi , i ∈ N Gi+1 ⊂ Gi , Gi ∩ F = ∅. 8.5 · 303 · {xn } {zi} zi ∈ Gi (i ∈ N), {zi } x0 ( 8.4.12 ), . P X k {x0 } ∪ {zi : i ∈ N} ⊂ X − F , l ∈ N P ∈ Pl , P {xn } P ⊂ X − F , P ∈ Ql . n l, xn ∈ X − ∪Ql , ∪Ql {xn } , . . Fα , m ∈ N {αi : i ∈ N} ⊂ ω1 i ∈ N Fαi ⊂ Pm . Ei = ∪Fαi (i ∈ N). Pm , {X − ji Ej : i ∈ N} X , f −1 (∞). f , i0 ∈ N f (X − ji0 Ej ) ∞ Y . , (i), j i0 , n nαj , f −1 (yαj ,n ) ⊂ Ej , ⎞ ⎛ yαj ,n ∈ Y − f (X − Ej ) ⊂ Y − f ⎝X − Ej ⎠ . ji0 f (X − . ji0 Ej ) ∞ . Y Sω1 . 8.5 . , . . 8.5.1 [135] X q r , Y , p : X × Y → X ? 8.5.2 (§ 5.2) ( )? 8.5.3 [217, 230] (§ 6.1) 6.1.2 () (ii) 6.1.4 (θ ) (ii) “ ” “ ”? 8.5.4 [143, 367] (§ 6.1) δθ δθ ? 8.5.5 [40] (§ 6.2) Lindelöf ? 8.5.6 (§ 6.2) T2 , meso ? [66, 369] 8.5.7 (§ 6.2) θ ? 8.5.8 [369] (§ 6.2) θ ? [66] 8.5.9 (§ 6.2) ortho ? 8.5.10 (§ 6.2) Meso Lindelöf meso ? · 304 · 8 8.5.11 (§ 6.2) θ ? () Lindelöf T2 8.5.12 (§ 6.2) δθ δθ ? θ θ 8.5.13 (§ 6.5) θ Lindelöf δθ δθ δθ ? θ δθ meta- 8.5.14 [143] (§ 6.6) () ? 8.5.15 [143] 8.5.16 [135] (i) P B () ? P ; (ii) P ; (iii) P . θ ? X P , X 8.5.17 [135] (i) P P P ; (ii) P ; (iii) P ; (iv) P . X θ P , X P ? . 8.5.18 [134] Σ Σ wσ β ? 8.5.19 [80] (§ 7.4) M2 ⇒ M1 ? 8.5.20 [141, 204] M1 ? M1 ? M1 8.5.21 [141] (∗) ? 8.5.22 [141] M0 ? 8.5.23 [141] µ ? 8.5.24 [141] σ 8.5.25 [141] P ? ? ? [427] 8.5.26 (§ 7.5) f : X → Y , X, Y T2 . X k , Y k ? 8.5.27 [139, 264] (§ 8.2) σ k ? k σ 8 · 305 · 8.5.28 [168, 249] (§ 8.4) σ k ? 8.1 [291] ℵ 8 T2 X X . X q (q-space [283] ), x ∈ X, x 8.2 {Un (x)}n∈N xn ∈ Un (x) ⇒ {xn } . X (pointwise countable type [20] ), x ∈ X, K x ∈ K K X . , r ; r q . Gδ , r, q, [287] . X Fréchet (strongly Fréchet space [359] ), X 8.3 {An }n∈N x ∈ An (n ∈ N), xn ∈ An {xn } x ( Fréchet ). , Fréchet ⇒ Fréchet ⇒ An = A , ( 2.3.1 ). [125] Fréchet [359] . [125] [19, 125] 8.4 [137] Fréchet [19, 125] [359] . X () , (i) X M1 ; (ii) X σ 8.5 [358] 8.6 ℵ . σ k σ k . Lindelöf 8.7 k F , F ∈ F . [284] 8.8 ℵ . X T2 , k Y . , (i) X cosmic ; (ii) X Lindelöf σ ; (iii) X σ . 8.9 [284] (i) X Lindelöf ℵ0 ( ℵ0 ), X ℵ0 ; (ii) X Xn , Xn , X . 8.10 [245] T2 . σ ℵ0 . 8.11 [328] · 306 · 8 () (i) X ℵ0 ; (ii) X Lindelöf ℵ ; (iii) X ℵ . 8.12 . , . 8.13 K ⊂ C (X, Y ) . x ∈ X, φ(x) = {f (x) : f ∈ K} Y 8.14 k cs∗ . 8.15 P T2 , k X . , P = {P : P ∈ P} . X P [73] (weakly hereditarily closure- 8.16 preserving), x(P ) ∈ P ∈ P, {{x(P )} : P ∈ P} ; P (countably weakly hereditarily closure-preserving), P [227] 8.17 8.18 Chaber . Fréchet , σ [258] [83] . T1 . k σ ( σ σ ). 8.19 [263] X Lašnev X Fréchet σ k . 8.20 C (X, Y ) X Y W (C, U ) = {f ∈ C (X, Y ) : f (C) ⊂ U }, C X , U Y . . X , C (X, Y ) Y |X| = {Yx : x ∈ X}, |X| X , Yx = Y (x ∈ X). 8.21 n ∈ N, (i) (ii) (iii) 8.22 8.23 C (X, Y ) W (C, U ) . n n i=1 W (Ci , U ) = W ( i=1 Ci , U ); n n i=1 W (C, Ui ) = W (C, i=1 Ui ); n n n i=1 W (Ci , Ui ) = W ( i=1 Ci , i=1 Ui ). C −C W (C, U ) ⊂ W (C, U ), “ y0 ∈ Y , cy0 : X → Y y → cy Y → C (X, Y ) Y ” . , cy0 (x) = y0 , x ∈ X. C (X, Y ) . Y C (X, Y ) . 8.24 [12] 8.25 C (X, Y ) T2 f : X → Y (sequentially quotient mapping [53] Y T2 . [144] (weak sequence-covering mapping) ), Y {yn } 8 · 307 · y, {yn } {ynk } xk ∈ f −1 (ynk ) (k ∈ N), x ∈ f −1 (y) {xk } x. , ( 8.4.2) . (i) cs∗ (, k , cs ); (ii) Fréchet ( Gδ ) ; (iii) Y Fréchet Fréchet (iv) ( X) Y ; . [1] Alexander C C. Semi-developable spaces and quotient images of metric spaces. Pacific J Math, 1971, 37: 277–293. [2] Alexandroff P S. Sur les ensembles de la premiére classe et les ensembles abstraits. C R Acad Paris, 1924, 178: 185–187. [3] Alexandroff P S. On bicompact extensions of topological spaces (in Russian). Mat Sb N S, 1939, 5: 403–423. [4] Alexandroff P S. Some results in the theory of topological spaces, obtained within the last twenty-five years. Russian Math Surveys, 1960, 15: 23–83 [5] Alexandroff P S. On some results concerning topological spaces and their continuous mappings. In: Proc 1st Topological Symp, Prague, 1961. General Topology and its Relations to Modern Analysis and Algebra I. New York: Academic Press, 1962. 41–54. [6] Alexandroff P S, Hopf H. Topologie I. Berlin, 1935. [7] Alexandroff P S, Niemytzki V V. The condition of metrizability of topological spaces and the axiom of symmetry (in Russian). Math Sb, 1938, 3: 663–672. [8] Alexandroff P S, Urysohn P. Sur les espaces topologiques compacts. Bull Intern Acad Pol Sci Ser A, 1923: 5–8. [9] Alexandroff P S, Urysohn P. Mémoire sur les espaces topologiques compacts. Verh Akad Wetensch, 1929, 14: 1–96. [10] Alster K, Burke D K, Davis S. The w∆-space problem. Topology Appl, 1988, 30: 175–181. [11] Aguaro G. Point countable open covering in countably compact spaces. In: Proc 2nd Prague Topological Symp, Prague, 1966. General Topology and its Relations to Modern Analysis and Algebra II, 1967. 39–41. [12] Arens R F. A topology for spaces of transformations. Ann Math, 1946, 47: 480–495. [13] Arens R, Dugundji J. Remark on the concept of compactness. Portug Math, 1950, 9: 141–143. [14] Arhangel’skiı̌ A V. An addition theorem for the weight of sets lying in bicompacts (in Russian). Dokl Akad Nauk SSSR, 1959, 126(2): 239–241. [15] Arhangel’skiı̌ A V. New criteria for the paracompactness and metrizability of an arbitrary T1 -spaces. (in Russian). Dokl Akad Nauk SSSR, 1961, 141(2): 13–15. : 320 450 . 69 , 28 , 102 , , , . · 309 · [16] Arhangel’skiı̌ A V. On mappings of metric spaces (in Russian). Dokl Akad Nauk SSSR, 1962, 145: 245–247. [17] Arhangel’skiı̌ A V. On open and almost open mappings of topological spaces (in Russian). Dokl Akad Nauk SSSR, 1962, 147: 999–1002. [18] Arhangel’skiı̌ A V. On a class of spaces containing all metric and all locally compact spaces (in Russian). Dokl Akad Nauk SSSR, 1963, 151: 751–754. [19] Arhangel’skiı̌ A V. Some types of factor mappings and the relations between classes of topological spaces (in Russian). Dokl Akad Nauk SSSR, 1963, 153: 743–746. [20] Arhangel’skiı̌ A V. Bicompact sets and the topology of spaces. Trans Mosc Math Soc, 1965, 13: 1–62. [21] Arhangel’skiı̌ A V. Mappings and spaces (in Russian). Uspechi Mat Nauk, 1966, 21(4): 133–184. [22] Arhangel’skiı̌ A V. The intersection of topologies, and pseudo-open bicompact mappings (in Russian). Dokl Akad Nauk SSSR, 1976, 226: 745–748 [23] Arhangel’skiı̌ A V. The star method, new classes of spaces and countable compactness. Soviet Math Dokl, 1980, 22: 550–554. [24] Arhangel’skiı̌ A V. General Topology III. Encyclopaedia of Mathematical Sciences, 51. Berlin: Springer-Verlag, 1995. [25] Arhangel’skiı̌ A V, Ponomarev V I. Fundamentals of General Topology: Problems and Exercises (in Russian). Moscow: Hayka, 1974 (: Jain V K . Mathematics and its Applications, 13. Dordrecht: Kluwer Academic Publishers, 1984). [26] Arya S P, Singal M K. More sum theorems for topological spaces. Pacific J Math, 1975, 59: 1–7. [27] Arya S P, Singal M K. On locally countable sum theorem. Pacific J Math, 1980, 90: 1–10. [28] Aull C E. A note on countably paracompact spaces and metrization. Proc Amer Math Soc, 1965, 16: 1316–1317. [29] Aull C E. Paracompact subsets. In: Proc 2nd Prague Topological Symp, Prague, 1966. General Topology and its Relations to Modern Analysis and Algebra II, 1967. 45–51. [30] Aull C E. A generalization of a theorem of Aquaro. Bull Austral Math Soc, 1973, 9: 105–108. [31] Aull C E. Quasi-developments and δθ-bases. J London Math Soc, 1974, 9: 197–204. [32] Aull C E. A survey paper on some base axioms. Topology Proc, 1978, 3: 1–36. [33] Aull C E, Lowen R. Handbook of the History of General Topology, 1. Dordrecht: Kluwer Academic Publishers, 1997. [34] Aull C E, Lowen R. Handbook of the History of General Topology, 2. Dordrecht: Kluwer Academic Publishers, 1998. [35] Aull C E, Lowen R. Handbook of the History of General Topology, 3. Dordrecht: Kluwer Academic Publishers, 2001. · 310 · [36] Bacon P. The compactness of countably compact spaces. Pacific J Math, 1970, 32: 587–592. [37] Bagley R W, Connell E H, McKnight J D. On properties characterizing pseudocompact spaces. Proc Amer Math Soc, 1958, 9: 500–506. [38] Baire R. Sur la représentation des fonctions discontinues (deuxiéme partie). Acta Math, 1909, 32: 97–176. [39] Balachandran V K. A mapping theorem for metric spaces. Duke Math J, 1955, 22: 461–464. [40] Balogh Z. Dowker spaces and paracompactness questions. Topology Appl, 2001, 114: 49–60. [41] Bennett H R. Quasi-developable spaces. Proc Arizona State Univ Top Conf, 1967. 314–317. [42] Bennett H R. On Arhangel’skiı̌’s class MOBI. Proc Amer Math Soc, 1970, 26: 178– 180. [43] Bennett H R. On quasi-developable spaces. General Topology Appl, 1971, 1: 253–262. [44] Bennett H R, Chaber J. Weak covering properties and the class MOBI. Fund Math, 1990, 134: 171–182. [45] Bennett H R, Lutzer D J. A note on weak θ-refinability. General Topology Appl, 1972, 2: 49–54. [46] Bing R H. Metrization of topological spaces. Canad J Math, 1951, 3: 175–186. [47] Birkhoff G. A note on topological groups. Comp Math, 1936, 3: 427–430. [48] Boone J R. Some characterizations of paracompactness in k-spaces. Fund Math, 1971, 72: 145–153. [49] Boone J R. A characterization of metacompactness in the class of θ-refinable spaces. General Topology Appl, 1973, 3: 253–264. [50] Boone J R. On k-quotient mappings. Pacific J Math, 1974, 51: 369–377. [51] Boone J R. On irreducible spaces. Bull Austral Math Soc, 1975, 12: 143–148. [52] Boone J R. On irreducible spaces II. Pacific J Math, 1976, 62: 351–357. [53] Boone J R, Siwiec F. Sequentially quotient mappings. Czech Math J, 1976, 26: 174– 182. [54] Borges C R. On stratifiable spaces. Pacific J Math, 1966, 17: 1–16. [55] Borges C R. On metrizability of topological spaces. Canad J Math, 1968, 20: 795–804. [56] Borges C R, Lutzer D J. Characterizations and mappings of Mi -spaces. In: Topology Conference (Virginia Polytech Inst and State Univ, Blacksburg, 1973). Lecture Notes in Math, 375. Berlin: Springer-Verlag, 1974. 34–40. [57] Bourbaki N. Topologie Générale ch. I et II (second ed.). Paris, 1951. [58] Buhagiar D. Invariance of strong paracompactness under closed-and-open maps. Proc Japan Acad, 1998, 74A(6): 90–92. [59] Buhagiar D, Lin Shou ( ). A note on subparacompact spaces. Matematicki Vesnik, · 311 · 2000, 52(3–4): 119–123. [60] Burke D K. On subparacompact spaces. Proc Amer Math Soc, 1969, 23: 655–663. [61] Burke D K. Subparacompact spaces. Proc Washington State Univ Top Conf, 1970. 39–48. [62] Burke D K. On p-spaces and w∆-spaces. Pacific J Math, 1970, 35: 285–296. [63] Burke D K. Spaces with Gδ -diagonal. In: TOPO 72–general topology and its applications. Proc 2nd Pittsburgh Internat Conf, Pittsburgh, 1972. Lecture Notes in Math, 378. Berlin: Springer-Verlag, 1974. 95–100. [64] Burke D K. Preservation of certain base axioms under a perfect mapping. Topology Appl, 1976, 1: 269–279. [65] Burke D K. Orthocompactness and pefect mappings. Proc Amer Math Soc, 1980, 78: 484–486. [66] Burke D K. Closed mappings. In: Reed G M ed. Surveys in General Topology. New York: Academic Press, 1980. 1–32. [67] Burke D K. Paralindelöf spaces and closed mappings. Topology Proc, 1980, 5: 47–57. [68] Burke D K. Spaces with a primitive base and perfect mappings. Fund Math, 1983, 116: 157–163. [69] Burke D K. Covering properties. In: Kunen K, Vaughan J E eds. Handbook of Settheoretic Topology. Amsterdam: Elsevier Science Publishers B V, 1984. 347–422. [70] Burke D K. Perfect images of spaces with a δθ-bases and weakly δθ-refinable spaces. Topology Appl, 1984, 18: 81–87. [71] Burke D K. Generalized metric spaces, Part II. In: Hart K P, Nagata J, Vaughan J E eds. Encyclopedia of General Topology. Amsterdam: Elsevier Science Publishers B V, 2004. 276–280. [72] Burke D K, Davis S W. Pseudo-compact paralindelöf spaces are compact. Abstracts Amer Math Soc, 1982, 3: 213–213. [73] Burke D K, Engelking R, Lutzer D J. Hereditarily closure-preserving collections and metrization. Proc Amer Math Soc, 1975, 51: 483–488. [74] Burke D K, Lutzer D J. Recent advances in the theory of generalized metric spaces. In: Topology: Proc 9th Ann Spring Top Conf, Memphis State Univ, 1975. Lecture Notes in Pure and Applied Mathematics, 24. New York: Marcel Dekker Inc, 1976. 1–70. [75] Burke D K, Michael E. On a theorem of V. V. Filippov. Israel J Math, 1972, 11: 394–397. [76] Burke D K, Michael E. On certain point-countable covers. Pacific J Math, 1976, 64: 79–92. [77] Burke D K, Stoltenberg R A. A note on p-spaces and Moore spaces. Pacific J Math, 1969, 30: 601–608. [78] de Caux P. A collectionwise normal weakly θ-refinable Dowker space which is neither · 312 · irreducible nor real compact. Topology Proc, 1976, 1: 67–77. [79] Čech E. On bicompact spaces. Ann Math, 1937, 38: 823–844. [80] Ceder J G. Some generalizations of metric spaces. Pacific J Math, 1961, 11: 105–125. [81] Chaber J. Conditions which imply compactness in countably compact spaces. Bull Acad Pol Sci, Sér Sci Math Astron Phys, 1976, 24: 993–998. [82] Chaber J. Metacompactness and the class MOBI. Fund Math, 1976, 91: 211-217. [83] Chaber J. Primitive generalizations of σ-spaces. In: Császár Á ed. Topology. Colloq Math Soc János Bolyai, 23, Budapest (Hungary), 1978. Amsterdam: North-Holland, 1980. 259–268. [84] Chaber J. Perfect images of p-spaces. Proc Amer Math Soc, 1982, 85: 609–614. [85] Chaber J. Perfect preimages of Moore spaces. Bull Pol Acad Sci, Math, 1983, 31: 31–34. [86] Chaber J. Generalizations of Lašnev’s theorem. Fund Math, 1983, 119: 85–91. [87] Chaber J. On the class MOBI. In: Frolı́c Z ed. Proc 6th Prague Top Symp, Prague, 1986. General Topology and its Relations to Modern Analysis and Algebra VI. Berlin: Heldermann Verlag, 1988. 77–82. [88] Chaber J, Junnila H J K. On θ-refinability of strict p-spaces. General Topology Appl, 1979, 10: 233–238. [89] . . , 1985, 5(4): 121–122. [90] . σ- . (), 1985, 1(2): 25–30. [91] Chen Bisheng ( ), Wu Lisheng (). On strongly M1 -spaces. (), 1994, 10: 75–80. [92] Christain U J. A note on the ralation between Lindelöf and ℵ1 -compact spaces. Comment Math Prace Math, 1972, 16: 215–217. [93] Christain U J. Concerning certain minimal cover refinable spaces. Fund Math, 1972, 76: 213–222. [94] Cohen D E. Spaces with weak topology. Quart J Math Oxford, Ser (2), 1954, 5: 77–80. [95] Collins P J. Monotone normality. Topology Appl, 1996, 74(1–3): 179–198. [96] Comfort W W. A short proof of Marczewski’s separability theorem. Amer Math Monthly, 1969, 76: 1041–1042. [97] Corson H, Michael E. Metrizability of certain countable unions. Illinois J Math, 1964, 8: 351–360. [98] Creede G D. Semi-stratifiable spaces. In: Proc Arizona State Univ Top Conf, 1967. 318–323. [99] Creede G D. Concerning semi-stratifiable spaces. Pacific J Math, 1970, 32: 47–54. [100] . σ σ σ . , 1981, 24: 656–667. [101] . Lindelöf . (A ), 1983, 4: 571– 575. [102] Davis S W. A cushioning type weak covering property. Pacific J Math, 1979, 80: · 313 · 359–370. [103] Davis S W. A nondevelopable Čech-complete space with a point-countable base. Proc Amer Math Soc, 1980, 78: 139–142. [104] Davis S W. The strict p-spaces problem. Topology Proc, 1985, 10: 277–292. [105] Davis S W, Smith J C. The paracompactness of preparacompact spaces. Topology Proc, 1979, 4: 345–360. [106] Dieudonné J. Une généralisation des espaces compacts. J Math Pures Appl, 1944, 23: 65–76. [107] van Douwen E K, Wicke H H. A real, weird topology on reals. Houston J Math, 1977, 3: 141–152. [108] Dowker C H. An imbedding theorem for paracompact metric spaces. Duke Math J, 1947, 14: 639–645. [109] Dowker C H. Mapping theorems for non-compact spaces. Amer J Math, 1947, 69: 200–242. [110] Dowker C H. On countably paracompact spaces. Canad J Math, 1951, 3: 219–224. [111] Dowker C H. Inductive dimension of completely normal spaces. Quar J Math, Oxford Ser (2), 1953, 4: 267–281. [112] Dugundji J. Topology. Boston: Allyn and Bacon Inc, 1966. [113] Eckertson F W, Garcia-Ferreira S, Sanchis M, Watson S. An isocompact Tychonoff space whose square is not isocompact. Topology Proc, 1997, 22: 181–190. [114] Engelking R. General Topology (revised and completed edition). Berlin: Heldermann Verlag, 1989. [115] Filippov V V. Preservation of the order of a base under a perfect mapping (in Russian). Dokl Akad Nauk SSSR, 1968, 181: 1077–1079. [116] Filippov V V. Quotient spaces and multiplicity of a base (in Russian). Mat Sb, 1969, 80(4): 521–532. [117] Fitzpatrick B Jr. Some topologically complete spaces. General Topology Appl, 1971, 1: 101–103. [118] Fleissner W G, Reed G M. Para-Lindelöf spaces and spaces with a σ-locally countable base. Topology Proc, 1977, 2: 89–110. [119] Fletcher P, Lindgren W F. Orthocompactness and strong Čech completeness in Moore spaces. Duke Math J, 1972, 39: 753–766. [120] Foged L. Characterizations of ℵ-spaces. Pacific J Math, 1984, 110: 59–63. [121] Foged L. Sequential coreflections of stratifiable spaces. Proc Amer Math Soc, 1984, 92: 470–472. [122] Foged L. A characterization of closed images of metric spaces. Proc Amer Math Soc, 1985, 95: 487–490. [123] Foged L. Normality in k-and ℵ-spaces. Topology Appl, 1986, 22: 223–240. [124] Fox R H. On topologies for function spaces. Bull Amer Math Soc, 1945, 51: 429–432. · 314 · [125] Franklin S P. Spaces in which sequences suffice. Fund Math, 1965, 57: 107–115. [126] Frink A H. Distance functions and the metrization problem. Bull Amer Math Soc, 1937, 43: 133–142. [127] Frolı́k Z. On the topological product of paracompact spaces. Bull Acad Pol Sci, Sér Sci Math Astron Phys, 1960, 8: 747–750. [128] Gale D. Compact sets of functions and function rings. Proc Amer Math Soc, 1950, 1: 303–308. [129] . . (), 1979, (1): 1–9. [130] . . (), 1979, (1): 10–13. [131] . . (), 1979, (1): 14–19. [132] . . , 1980, 23: 794–796 ( , : (), 1980, (1): 1–9). [133] Gao Guoshi (Kao Kuo-shih, ). A note on M1 -spaces. Pacific J Math, 1983, 108: 121–128. [134] . σ- Σ- Heath-Hodel . , 1984, 4(1): 137–142; 1986, 6(4): 155–163. [135] . . (), 1984, (1): 1–7. [136] Gao Guoshi. Mapping theorems on paracompact spaces. (), 1985, 1(1): 1–3. [137] . M1 - [138] . . , 1985, 5(4): 47–48. . , 1986, 29: 58–62. [139] . k- . (), 1986, 2: 107–111. [140] . . A , 1986, 7: 666–669. [141] . M1 - . (), 1988, 4: 289–300. [142] . . : , 1988. [143] . . , 1989, 18: 143–149. [144] Gao Guoshi. Weak sequence-covering mapping and cs∗ -network. ( ), 1993, 9: 105–111. [145] . II. , 1995, 24: 423–426. [146] . . : , 2000. [147] Gao Guoshi (Kao Kuo-shih), Wu Lisheng. Mapping theorems on mesocompact spaces. Proc Amer Math Soc, 1983, 89: 355–357. [148] . K- . (), 1985, (3): 12–16. [149] Gao Zhimin ( ). On g-function separation. Questions Answers in General Topology, 1986, 4: 47–57. [150] Gao Zhimin. ℵ-spaces is invariant under perfect mappings. Questions Answers in General Topology, 1987, 5: 271–279. [151] Gao Zhimin. The closed images of metric spaces and Fréchet ℵ-spaces. Questions Answers in General Topology, 1987, 5: 281–291. · 315 · [152] Gao Zhimin, Hattori Y. A characterization of closed s-images of metric spaces. Questions Answers in General Topology, 1986/87, 4: 147–151. [153] . . (), 1992, 28: 368–371. [154] Ge Ying (). Closed Lindelöf mappings inversely preserve property b1 . Questions Answers in General Topology, 1993, 11: 81–85. [155] . B . (), 1994, 10: 205–210. [156] . θ- L . , 1994, 14: 426–428. [157] . Fσ T1 . (), 1997, 13: 8–9. [158] . . (), 1998, 34: 16–20. [159] Ge Ying. On closed inverse images of mesocompact spaces. Fasciculi Math, 2005, 36: 27–32. [160] , . θ- . , 1998, 18: 62–64. [161] Gittings R F. Some results on weak covering conditions. Canad J Math, 1974, 26: 1152–1156. [162] Gittings R F. Open mapping theory. In: Reed G M ed. Set-theoretic Topology (Papers, Inst Medicine and Math, Ohio Univ, Athens, 1975–1976). New York: Academic Press, 1977. 141–191. [163] Gruenhage G. Stratifiable spaces are M2 . Topology Proc, 1976, l: 221–225. [164] Gruenhage G. On closed images of orthocompact spaces. Proc Amer Math Soc, 1979, 77: 389–394. [165] Gruenhage G. On the M3 ⇒ M1 question. Topology Proc, 1980, 5: 77–104. [166] Gruenhage G. Generalized metric spaces. In: Kunen K, Vaughan J E eds. Handbook of Set-theoretic Topology. Amsterdam: Elsevier Science Publishers B V, 1984. 423–501. [167] Gruenhage G. On a Corson compact space of Todorčević. Fund Math, 1986, 126: 261–268. [168] Gruenhage G. Generalized metric spaces and metrization. In: Hušek M, van Mill J eds. Recent Progress in General Topology. Papers from the Prague Top Symp, Prague, 1991. Amsterdam: Elsevier Science Publishers B V, 1992. 239–274. [169] Gruenhage G. Irreducible restrictions of closed mappings. Topology Appl, 1998, 85: 127–135. [170] Gruenhage G. Are stratifiable spaces M1 ? In: Pearl E ed. Open Problems in Topology II. Amsterdam: Elsevier Science Publishers B V, 2007. 143–150. [171] Gruenhage G, Michael E A, Tanaka Y. Spaces determined by point-countable covers. Pacific J Math, 1984, 113: 303–332. [172] . . : , 1958. [173] Guthrie J A. A characterization of ℵ0 -spaces. General Topology Appl, 1971, 1: 105– 110. [174] Guthrie J A. Mapping spaces and cs-networks. Pacific J Math, 1973, 47: 465–471. [175] Halfar E. Compact mappings. Proc Amer Math Soc, 1957, 8: 828–830. · 316 · [176] Hanai S. On closed mappings II. Proc Japan Acad, 1956, 32: 388–391. [177] Hanai S. On open mappings II. Proc Japan Acad, 1961, 37: 233–238. [178] Hanai S. Inverse images of closed mappings I. Proc Japan Acad, 1961, 37: 298–301. [179] Harley P W III, Stephenson R M Jr. Symmetrizable and related spaces. Trans Amer Math Soc, 1976, 219: 89–111. [180] Hart K P, Nagata J, Vaughan J E. Encyclopedia of General Topology. Amsterdam: Elsevier Science Publishers B V, 2004. [181] Hausdorff F. Grundzüge der Mengenlehre. Leipzig, 1914. [182] Hausdorff F. Mengenlehre. Berlin, 1935. [183] Heath R W. Arc-wise connectedness in semi-metric spaces. Pacific J Math, 1962, 12: 1301–1319. [184] Heath R W. Screenability, pointwise paracompactness and metrization of Moore spaces. Canad J Math, 1964, 16: 763–770. [185] Heath R W. A paracompact semi-metric space which is not an M3 -space. Proc Amer Math Soc, 1966, 17: 868–870. [186] Heath R W. Stratifiable spaces are σ-spaces. Notices Amer Math Soc, 1969, 17: 761– 761. [187] Heath R W, Hodel R E. Characterizations of σ-spaces. Fund Math, 1973, 77: 271–275. [188] Heath R W, Junnila H J K. Stratifiable spaces as subspaces and continuous images of M1 -spaces. Proc Amer Math Soc, 1981, 83: 146–148. [189] Heath R W, Lutzer D J, Zenor P L. Monotonically normal spaces. Trans Amer Math Soc, 1973, 178: 481–493. [190] Henriksen M, Isbell J R. Some properties of compactifications. Duke Math J, 1958, 25: 83–105. [191] Henry M. Stratifiable spaces, semi-stratifiable spaces, and their relation through mappings. Pacific J Math, 1971, 37: 697–700. [192] Hewitt E. On two problems of Urysohn. Ann Math, 1946, 47: 503–509. [193] Hewitt E. Rings of real-valued continuous functions I. Trans Amer Math Soc, 1948, 64: 54–99. [194] Hodel R E. Sum theorems for topological spaces. Pacific J Math, 1969, 30: 59–65. [195] Hodel R E. A note on subparacompact spaces. Proc Amer Math Soc, 1970, 25: 842– 845. [196] Hodel R E. Moore spaces and w∆-spaces. Pacific J Math, 1971, 38: 641–652. [197] Hodel R E. Spaces defined by sequences of open covers which guarantee that certain sequences has cluster points. Duke Math J, 1972, 39: 253–263. [198] House V D. Countable products of generalized countably compact spaces. Pacific J Math, 1975, 57: 183–197. [199] Hurewicz W. Ueber stetige bilder von punktmengen. Proc Akad Amsterdam, 1926, 29: 1014–1017. · 317 · [200] Ishii T. On closed mappings and M-spaces I, II. Proc Japan Acad, 1967, 43: 752–761. [201] Ishii T, Shiraki T. Some properties of wM-spaces. Proc Japan Acad, 1971, 47: 167– 172. [202] Ishikawa F. On countably paracompact spaces. Proc Japan Acad, 1955, 31: 686–687. [203] Isiwata T. The product of M-spaces need not be an M-space. Proc Japan Acad, 1969, 45: 154–156. [204] Itō M. The closed image of a hereditarily M1 -space is M1 . Pacific J Math, 1984, 113: 85–91. [205] Itō M. M3 -spaces whose every point has a closure preserving outer base are M1 . Topology Appl, 1985, 19: 65–69. [206] Itō M, Tamano K. Spaces whose closed images are M1 . Proc Amer Math Soc, 1983, 87: 159–163. [207] . . , 1986, 29: 679–701. [208] . . (), 1987, 24: 256–261. [209] Jiang Jiguang (). A characterization of submetacompactness. Chin Ann Math Ser B, 1988, 9: 151–155. [210] . b1 . , 1989, 32: 351–355. [211] . . : [212] , !. , 1991. . (A ), 2005, 26: 771–776. [213] Jiang Shouli ("). Every strict p-space is θ-refinable. Topology Proc, 1986, 11: 309–316. [214] Jiang Shouli. On a Junnila’s problem. Questions Answers in General Topology, 1988, 6: 43–47. [215] Jones F B. Concerning normal and completely normal spaces. Bull Amer Math Soc, 1937, 43: 671–677. [216] Junnila H J K. Neighbornets. Pacific J Math, 1978, 76: 83–108. [217] Junnila H J K. On submetacompactness. Topology Proc, 1978, 3: 375–405. [218] Junnila H J K. Covering properties and quasi-uniformities of topological spaces. Ph D Thesis, Virginia Polytech Inst and State Univ, 1978. [219] Junnila H J K. Paracompactness, metacompactness and semi-open covers. Proc Amer Math Soc, 1979, 73: 244–248. [220] Junnila H J K. Metacompactness, paracompactness and interior-preserving open covers. Trans Amer Math Soc, 1979, 249: 373–385. [221] Junnila H J K. Three covering properties. In: Reed G M ed. Surveys in General Topology. New York: Academic Press, 1980. 195–245. [222] Junnila H J K. Covering properties. In: Hušek M, van Mill J eds. Recent Progress in General Topology. Papers from the Prague Top Symp, Prague, 1991. Amsterdam: Elsevier Science Publishers B V, 1992. 444–452. [223] Junnila H J K, Mizokami T. Characterizations of straitifiable µ-spaces. Topology · 318 · Appl, 1985, 21: 51–58. [224] Junnila H J K, Smith J C and Telgársky R. Closure-preserving covers by small sets. Topology Appl, 1986, 23: 237–362. [225] Junnila H J K, Yun Ziqiu (). ℵ-spaces and spaces with a σ-hereditarily closurepreserving k-network. Topology Appl, 1992, 44: 209–215. [226] Kakutani S. Über die Metrization der topologischen Gruppen. Proc Japan Acad, 1936, 12: 82–84. [227] Kanatani Y, Sasaki N, Nagata J. New characterizations of some generalized metric spaces. Math Japonica, 1985, 30: 805–820. [228] Katětov M. Measures in fully normal spaces. Fund Math, 1951, 38: 73–84. [229] Katětov M. Extension of locally finite coverings (in Russian). Colloq Math, 1958, 6: 145–151. [230] Katuta Y. Expandability and its generalizations. Fund Math, 1975, 87: 231–250. [231] Kelley J L. The Tycholloff product theorem implies the axiom of choice. Fund Math, 1950, 37: 75–76. [232] Kelley J L. General Topology. New York: van Nostrand, 1955 (Graduate Texts Math, 27. Berlin: Springer-Verlag, 1975. : #$ , . . : [233] (Kodama Y), 1974 (: , 2001 . : , 1982). (Nagami K). (). : $, . . : , 1984). [234] Kofner J. Open compact mappings, Moore spaces and orthocompactness. Rocky Mountain J Math, 1982, 12(1): 107–112. [235] Kramer T R. A note on countably subparacompact spaces. Pacific J Math, 1973, 46: 209–213. [236] Kullman D E. Developable spaces and p-spaces. Proc Amer Math Soc, 1971, 27: 154–160. [237] Kuratowski K. Sur les espaces complets. Fund Math, 1930, 15: 301–309. [238] Kuratowski K. Evaluation de la classe borélienne d’un ensemble de points à l’aide des symboles logiques. Fund Math, 1931, 17: 249–272. [239] Kuratowski K. Topologie I (second ed). Warszawa, 1948. [240] Lašnev N. On continuous decompositions and closed mappings of metric spaces (in Russian). Dokl Akad Nauk SSSR, 1965, 165: 756–758. [241] Lašnev N. Closed images of metric spaces (in Russian). Dokl Akad Nauk SSSR, 1966, 170: 505–507. [242] . [243] . K- [244] . . , 1993, 8: 24–29. . (), 1988, 4: 357–363. T1 . (), 1988, 4: 184–187. [245] Lin Shou. A study of pseudobases. Questions Answers in General Topology, 1988, 6: · 319 · 81–97. [246] Lin Shou. Mapping theorems on ℵ-spaces. Topology Appl, 1988, 30: 159–164. [247] Lin Shou. On a problem of K. Tamano. Questions Answers in General Topology, 1988, 6: 99–102. [248] . . (), 1989, 5: 313–326. [249] Lin Shou. A survey of the theory of ℵ-spaces. Questions Answers in General Topology, 1990, 8: 405–419. [250] . [251] . Lašnev . , 1991, 34: 222–225. . (), 1990, 6: 453–456. [252] . Lašnev . , 1991, 20: 192–194. [253] . σ- . A , 1991, 12: 188–190. [254] . . (), 1992, 6(2): 17– 23. [255] . Arhangel’skiı̌ “”. (), 1992, 8: 393– 400. [256] Lin Shou. Spaces with σ-hereditarily closure-preserving k-networks. Math Japonica, 1992, 37: 17–21. . Arhangel’skiı̌ “” (). (), 1993, 9: [257] 11–19. [258] Lin Shou. Mapping theorems on k-semistratifiable spaces. Tsukuba J Math, 1997, 21: 809–815. [259] . . : , 2002. [260] . Arhangel’skiı̌ . (A ), 2006, 27: 719–722. [261] . ( 2 ). : , 2007. [262] Lin Shou, Tanaka Y. Point-countable k-networks, closed maps, and related results. Topology Appl, 1994, 59: 79–86. [263] Liu Chuan ( ). Spaces with a σ-compact finite k-network. Questions Answers in General Topology, 1992, 10: 81–87. [264] Liu Chuan, Tanaka Y. Spaces and mappings: special networks. In: Pearl E ed. Open Problems in Topology II. Amsterdam: Elsevier Science Publishers B V. 2007. 23–34. [265] . [266] . σ- . (), 1978, 1: 11–17. [267] . . , 1982. 2.1–2.3. [268] , . . , 1989. 3.20–3.24. [269] . . , 1977, 20: 212–214. . , 1986, 29: 666–669. [270] Lutzer D J. Semimetrizable and stratifiable spaces. General Topology Appl, 1971, 1: 43–48. [271] Mack J. Directed covers and paracompact spaces. Canad J Math, 1967, 19: 649–654. [272] Mancuso V J. Mesocompactness and related properties. Pacific J Math, 1970, 33: · 320 · 345–355. [273] Mancuso V J. Inverse images and first countability. General Topology Appl, 1972, 2: 29–44. [274] Mansfield M J. Some generalizations of full normality. Trans Amer Math Soc, 1957, 86: 489–505. [275] Mansfield M J. On countably paracompact normal spaces. Canad J Math, 1957, 9: 443–449. [276] Marczewski E. Séparabilité et multiplication Cartésienne des espaces topologiques. Fund Math, 1947, 34: 127–143. [277] Mashburn J D. A note on irreducibility and weak covering properties. Topology Proc, 1984, 9: 339–352. [278] Michael E A. A note on paracompact spaces. Proc Amer Math Soc, 1953, 4: 831–838. [279] Michael E A. Point-finite and locally finite coverings. Canad J Math, 1955, 7: 275–279. [280] Michael E A. Another note on paracompact spaces. Proc Amer Math Soc, 1957, 8: 822–828. [281] Michael E A. Yet another note on paracompact spaces. Proc Amer Math Soc, 1959, 10: 309–314. [282] Michael E A. The product of a normal space and a metric space need not be normal. Bull Amer Math Soc, 1963, 69: 375–376. [283] Michael E A. A note on closed maps and compact sets. Israel J Math, 1964, 2: 173– 176. [284] Michael E A. ℵ0 -spaces. J Math Mech, 1966, 15: 983–1002. [285] Michael E A. Bi-quotient maps and Cartesian products of quotient maps. Ann Inst Fourier Grenoble, 1968, 18: 287–302. [286] Michael E A. On Nagami’s Σ-spaces and some related matters. Proc Washington State Univ Top Conf, 1970. 13–19. [287] Michael E A. A quintuple quotient quest. General Topology Appl, 1972, 2: 91–138. [288] Michael E A. On k-spaces, kR -spaces and k(X). Pacific J Math, 1973, 47: 487–498. [289] Michael E A. Review of Guthrie’s mapping spaces and cs-networks. Math Rev, 1975, 49: 696–697. [290] Michael E A. σ-locally finite maps. Proc Amer Math Soc, 1977, 65: 159–164. [291] Michael E A, Nagami K. Compact-covering images of metric spaces. Proc Amer Math Soc, 1973, 37: 260–266. [292] van Mill J, Reed G M. Open Problems in Topology. Amsterdam: Elsevier Science Publishers B V, 1990. [293] Miller E S. Closed preimages of certain isocompactness properties. Topology Proc, 1988, 13: 107–123. [294] Miščenko A. Spaces with a pointwise denumerable basis (in Russian). Dokl Akad Nauk SSSR, 1962, 144: 985–988. · 321 · [295] Mizokami T. On the dimension of general metric spaces. Ph D Dissertation, Univ of Tsukuba, 1982. [296] Mizokami T. On a certain class of M1 -spaces. Proc Amer Math Soc, 1983, 87: 357–362. [297] Mizokami T. On M-structures. Topology Appl, 1984, 17: 63–89. [298] Mizokami T. On closed subsets of M1 -spaces. Topology Appl, 2004, 141: 197–206. [299] Moore R L. On the foundations of plane analysis situs. Trans Amer Math Soc, 1916, 17(2): 131–164. [300] Moore R L. A set of axioms for plane analysis situs. Fund Math, 1935, 25: 13–28. [301] Morita K. Star-finite coverings and the star-finite property. Math Japonicae, 1948, 1: 60–68. [302] Morita K. On spaces having the weak topology with respect to closed coverings. Proc Japan Acad, 1953, 29: 537–543. [303] Morita K. On closed mappings. Proc Japan Acad, 1956, 32: 539–543. [304] Morita K. Paracompactness and product spaces. Fund Math, 1961/62, 50: 223–236. [305] Morita K. Products of normal spaces with metric spaces. Math Ann, 1964, 154: 365– 382. [306] Morita K. Some properties of M-spaces. Proc Japan Acad, 1967, 43: 869–872. [307] Morita K. Some problems on normality of products of spaces. In: Proc 4th Prague Top Symp, Prague, 1976. General Topology and its Relations to Modern Analysis and Algebra IV, Part B, 1977. 296–297. [308] Morita K, Hanai S. Closed mappings and metric spaces. Proc Japan Acad, 1956, 32: 10–14. [309] Morita K, Nagata J. Topics in General Topology. Amsterdam: Elsevier Science Publishers B V, 1989. [310] Mrówka S. Compactness and product spaces. Coll Math, 1959, 7: 19–22. [311] Mysior A. A regular space which is not completely regular. Proc Amer Math Soc, 1981, 81: 652–653. [312] Nagami K. Σ-spaces. Fund Math, 1969, 65: 169–192. [313] Nagami K. Normality of products. Actes Congres Internat Math, 1970, 2: 33–37. [314] Nagami K. Minimal class generated by open compact and perfect mappings. Fund Math, 1973, 78: 227–264. [315] Nagata J. On a necessary and sufficient condition of metrizability. J Inst Polytech Osaka City Univ Ser A Math, 1950, 1: 93–100. [316] Nagata J. A contribution to the theory of metrization. J Inst Polytech Osaka City Univ Ser A, 1957, 8: 185–192. [317] Nagata J. Mappings and M-spaces. Proc Japan Acad, 1969, 45: 140–144. [318] Nagata J. A survey of the theory of generalized metric spaces. In: Proc 3th Prague Top Symp, Prague, 1971. General Topology and its Relations to Modern Analysis and Algebra III, 1972. 321–331. · 322 · [319] Nagata J. Modern General Topology (2nd rev ed). North-Holland Math Library, 33. Amsterdam: Elsevier Science Publishers B V, 1985. [320] Nagata J. Generalized metric spaces I. In: Morita K, Nagata J eds. Topics in General Topology. North-Holland Math Library, 41. Amsterdam: Elsevier Science Publishers B V, 1989. 315–366. [321] Novàk J. On the Cartesian product of two compact spaces. Fund Math, 1953, 40: 106–112. [322] Ohta H. Well behaved subclasses of M1 -spaces. Topology Appl, 1989, 32: 279–288. [323] Okuyama A. On metrizability of M-spaces. Proc Japan Acad, 1964, 40: 176–179. [324] Okuyama A. Some generalizations of metric spaces, their metrization theorems and product spaces. Sci Rep Tokyo Kyoiku Daigaku, 1968, A9: 236–254. [325] Okuyama A. σ-spaces and closed mappings, I, II. Proc Japan Acad, 1968, 44: 472–481. [326] Okuyama A. A survey of the theory of σ-spaces. General Topology Appl, 1971, 1: 57–63. [327] Okuyama A. On a generalization of Σ-spaces. Pacific J Math, 1972, 42: 485–495. [328] O’Meara P. A new class of topological spaces. University of Alberta Dissertation, 1966. [329] O’Meara P. A metrization theorem. Math Nachr, 1970, 45: 69–72. [330] O’Meara P. On paracompactness in function spaces with the compact-open topology. Proc Amer Math Soc, 1971, 29: 183–189. [331] Patsei I P. The σ-product of strong Σ -spaces (in Russian). Vestnik Moskov Univ Mat, 1986, 39(2): 87–89. [332] Pearl E. Open problems in topology, seventh status report. Topology Appl, 2001, 114: 333–352. [333] Pearl E. Open Problems in Topology 2. Amsterdam: Elsevier Science Publishers B V, 2007. [334] Pondiczery E S. Power problems in abstract spaces. Duke Math J, 1944, 11: 835–837. [335] Ponomarev V I. Axioms of countability and continuous mappings (in Russian). Bull Acad Pol Sci, Sér Sci Math Astron Phys, 1960, 8: 127–134. [336] Ponomarev V I. Proof of the invariance of the star finite property under open perfect mappings. Bull Acad Pol Sci, Sér Sci Math Astron Phys, 1962, 10: 425–428. [337] Popov V. A perfect map need not preserved a Gδ -diagonal. General Topology Appl, 1977, 7: 31–33. [338] Pospı́šil B. Remark on bicompact spaces. Ann Math, 1937, 38: 845–846. [339] Potoczny H B. A nonparacompact space which admits a closure-preserving cover of compact sets. Proc Amer Math Soc, 1972, 32: 309–311. [340] Potoczny H B. Closure-preserving families of compact sets. General Topology Appl, 1973, 3: 243–248. [341] Potoczny H B, Junnila H J K. Closure-preserving families and metacompactness. Proc · 323 · Amer Math Soc, 1975, 53: 523–529. [342] , , %. . , 1985. [343] Ross K A, Stone A H. Products of separable spaces. Amer Math Monthly, 1964, 71: 398–403. [344] Rudin M E. A normal space X for which X × I is not normal. Fund Math, 1971/72, 73: 179–186. [345] Rudin M E. The normality of products with one compact factor. General Topology Appl, 1975, 5: 45–59. [346] Rudin M E. Some conjectures. In: van Mill J, Reed G M ed. Open Problems in Topology. Amsterdam: North-Holland, 1990. 183–193. [347] Sakai M. A new class of isocompact spaces and related results. Pacific J Math, 1986, 122: 211–221. [348] Scott B M. Toward a product theory for orthocompactness. Studies in Topology (Proc Conf, Univ North Carolina, Charlotte, N C, 1974; dedicated to Math Sect Polish Acad Sci). New York: Academic Press, 1975. 517–537. [349] Scott B M. Orthocompactness is nomality in finite products of locally compact LOTS’s. In: Reed G M ed. Set-theoretic Topology (Papers, Inst Medicine and Math, Ohio Univ, Athens, 1975–1976). New York: Academic Press, 1977. 339–348. [350] Scott B M. Pseudocompact, metacompact spaces are compact. Topology Proc, 1979, 4: 577–587. [351] Scott B M. More about orthocompactness. Topology Proc, 1980, 5: 155–184. [352] Šedivà V. On collectionwise normal and strongly paracompact spaces (in Russian). Czech Math J, 1959, 9: 50–62. [353] Shiraki T. M-spaces, their generalization and metrization theorems. Sci Rep Tokyo Kyoiku Daigaku Sect A, 1971, 11: 57–67. [354] Sierpiński W. General Topology. Warsaw, 1952. [355] Singal M K, Arya S P. Two sum theorems for topological spaces. Israel J Math, 1970, 8: 155–158. [356] Singal M K, Arya S P. On the closure-preserving sum theorem. Proc Amer Math Soc, 1975, 53: 518–522. [357] Singal M K, Arya S P. Weak topology sum theorems. In: Császár Á ed. Topology, II. Colloq Math Soc János Bolyai, 23, Budapest (Hungary), 1978. Amsterdam: NorthHolland, 1980. 1095–1109. [358] Singal M K, Jain P. A note on ℵ-spaces. Kyungpook Math J, 1973, 13: 203–210. [359] Siwiec F. Sequence-covering and countably bi-quotient mappings. General Topology Appl, 1971, 1: 143–154. [360] Siwiec F. On defining a space by a weak base. Pacific J Math, 1974, 52: 233–245. [361] Siwiec F, Mancuso V J. Relations among certain mappings and conditions for their equivalence. Topology Appl, 1971, 1: 33–41. · 324 · [362] Siwiec F, Nagata J. A note on nets and metrization. Proc Japan Acad., 1968, 44: 623–627. [363] Slaughter F G Jr. The closed image of a metrizable space is M1 . Proc Amer Math Soc, 1973, 37: 309–314. [364] Smirnov Yu M. On the metrization of topological spaces (in Russian). Uspechi Mat Nauk, 1951, 6(6): 100–111. [365] Smirnov Yu M. On strongly paracompact spaces (in Russian). Izv Akad Nauk SSSR, Ser Math, 1956, 20: 253–274. [366] Smith J C. Properties of weak θ-refinable spaces. Proc Amer Math Soc, 1975, 53: 511–517. [367] Smith J C. A remark on irreducible spaces. Proc Amer Math Soc, 1976, 57: 133–139. [368] Smith J C. New characterizations for collectionwise normal spaces. Glasnik Math, 1977, 12(32): 327–338. [369] Smith J C. Irreducible spaces and property b1 . Topology Proc, 1980, 5: 187–200. [370] Šneı̌der V E. Continuous images of Suslin and Borel sets, metrization theorems (in Russian). Dokl Akad Nauk SSSR, 1945, 50: 77–79. [371] Sorgenfrey R H. On the topological product of paracompact spaces. Bull Amer Math Soc, 1947, 53: 631–632. [372] Steen L A, Seebach J A Jr. Counterexamples in Topology (Second Edition). New York: Springer-Verlag, 1978 (New York: Dover Publications Inc, 1995). [373] Stoltenberg R A. A note on stratifiable spaces. Proc Amer Math Soc, 1969, 23: 294– 297. [374] Stone A H. Paracompactness and product spaces. Bull Amer Math Soc, 1948, 54: 977–982. [375] Stone A H. Metrizability of decomposition spaces. Proc Amer Math Soc, 1956, 7: 690–700. [376] Stone A H. Metrisability of union of spaces. Proc Amer Math Soc, 1959, 10: 361–366. [377] Stone A H. Hereditarily compact spaces. Amer J math, 1960, 82: 900–916. [378] Stone A H. Sequences of coverings. Pacific J Math, 1960, 10: 689–691. [379] Stone M H. Applications of the theory of Boolean rings to general topology. Trans Amer Math Soc, 1937, 41: 375–481. [380] Sun Shuhao ( &). The class of ℵ-spaces is invariant of closed mappings with Lindelöf fibres. Comment Math Univ Carolina, 1988, 29: 351–354. [381] Suzuki J. On a theorem for M-spaces. Proc Japan Acad, 1967, 43: 610–614. [382] Suzuki J. On pre-σ-spaces. Bull Tokyo Gakugei Univ IV Ser, 1976, 28: 22–32. [383] Tamano H. On paracompactness. Pacific J Math, 1960, 10: 1043–1047. [384] Tamano H. On compactifications. J Math Kyoto Univ, 1961/62, 1: 161–193. [385] Tamano H. A characterization of paracompactness. Fund Math, 1971, 72: 189–201. [386] Tamano K. Stratifiable spaces defined by pair collections. Topology Appl, 1983, 16: · 325 · 287–301. [387] Tamano K. µ-spaces, stratifiable spaces and mosaical collections. Math Japonica, 1989, 34: 483–496. [388] Tamano K. Generalized metric spaces II. In: Morita K, Nagata J eds. Topics in General Topology. North-Holland Math Library, 41. Amsterdam: Elsevier Science Publishers B V, 1989. 367–409. [389] Tamano K. A cosmic space which is not a µ-space. Topology Appl, 2001, 115: 259–263. [390] Tanaka Y. Metrizability of certain quotient spaces. Fund Math, 1983, 119: 157–168. [391] Tanaka Y. Point-countable covers and k-networks. Topology Proc, 1987, 12: 327–349. [392] Tanaka Y. Metrization II. In: Morita K, Nagata J eds. Topics in General Topology. North-Holland Math Library, 41. Amsterdam: Elsevier Science Publishers B V, 1989. 275–314. [393] Teng Hui (). A note on B-property. Math Japonica, 1990, 35: 105–109. [394] Teng Hui. On σ-product spaces I. Math Japonica, 1991, 36: 515–522. [395] Teng Hui. On countable σ-product spaces. Chin Ann Math Ser B, 1993, 14: 113–116. [396] , ', . . (A ), 1989, 10: 554–558. [397] Tietze H. Beiträge zur allgemeinen Topologie I. Math Ann, 1923, 88: 290–312. [398] Tukey J W. Convergence and Uniformity in Topology. Ann Math Studies, 2. Princeton: Princeton Univ Press, 1940. [399] Tychonoff A. Über einen Metrisationssatz von P. Urysohn. Math Ann, 1925, 95: 139– 142. [400] Tychonoff A. Über die topologische Erweiterung von Räumen. Math Ann, 1930, 102: 544–561. [401] Tychonoff A. Ein Fixpunktsatz. Math Ann, 1935, 111: 767–776. [402] Urysohn P. Über die Metrisation der kompakten topologischen Räume. Math Ann, 1924, 92: 275–293. [403] Urysohn P. Über die Mächtigkeit der zusammenhängenden Mengen. Math Ann, 1925, 94: 262–295. [404] Urysohn P. Zum Metrisationsproblem. Math Ann, 1925, 94: 309–315. [405] Vaiı̌nšteı̌n I A. On closed mappings of metric spaces (in Russian). Dokl Akad Nauk SSSR, 1947, 57: 319–321. [406] Ward L E Jr. A weak Tychonoff theorem and the axiom of choice. Proc Amer Math Soc, 1962, 13: 757–758. [407] Watson W S. Pseudocompact metacompact spaces are compact. Proc Amer Math Soc, 1981, 81: 151–152. [408] Watson W S. A pseusocompact meta-Lindelöf space which is not compact. Topology Proc, 1985, 20: 237–243. [409] Weil A. Sur les espaces à stucture uniforme et sur la topologie générale. Paris, 1938. [410] Wicke H H, Worrell J M Jr. Point-countability and compactness. Proc Amer Math · 326 · Soc, 1976, 55: 427–431. [411] Willard S. General Topology. Addison-Wesley, Reading, Mass, 1970. [412] Wilson W A. On semi-metric spaces. Amer J Math, 1931, 53: 361–373. [413] Worrell J M Jr. A characterization of metacompact spaces. Portugal Math, 1966, 25: 171–174. [414] Worrell J M Jr. The closed continuous images of metacompact topological spaces. Portug Math, 1966, 25: 175–179. [415] Worrell J M Jr. Some properties of full normatity and their relations to Čech completeness. Notices Amer Math Soc, 1967, 14: 555. [416] Worrell J M Jr, Wicke H H. Characterizations of developable topological spaces. Canad J Math, 1965, 17: 820–830. [417] Worrell J M Jr, Wicke H H. A covering property which implies isocompactness, I. Proc Amer Math Soc, 1980, 79: 331–334. [418] . . (), 1981, (1): 6–10. [419] . K- . (), 1983, (1): 1–4. [420] Wu Lisheng. A note on covering property which implies isocompactness. , 1984, (4): 1–2. [421] . . (), 1984, (1): 8– 12. [422] Wu Lisheng. On range decomposition theorem. (), 1990, 6: 119–122. [423] Xia Shengxiang ('). Mapping theorems on some generalized metric spaces. Questions Answers in General Topology, 1988, 6: 107–115. [424] Xia Shengxiang. On irreducible closed images of M1 -spaces. Questions Answers in General Topology, 1990, 8: 503–508. [425] , . . , 2005, 25: 107–110. [426] Yasui Y. Note on the characterizations of a B-property. Questions Answers in General Topology, 1987, 5: 195–201. [427] Yoshioka I. Closed images of spaces having g-functions. Topology Appl, 2007, 154: 1980–1992. [428] . . (), 1981(2): 13–15. [429] Yun Ziqiu. On point-countable closed k-network. Questions Answers in General Topology, 1989, 7: 139–140. [430] Yun Ziqiu. Metrizable spaces, Lašnev spaces and ℵ-spaces. Ph D Dissetation, Univ Helsinki, 1990. [431] Yun Ziqiu. A new characterization of ℵ-spaces. Topology Proc, 1991, 16: 253–256. [432] Zenor P L. On countable paracompactness and normality. Prace Mat, 1969, 13: 23–32. [433] Zenor P L. A class of countably paracompact spaces. Proc Amer Math Soc, 1970, 24: 258–262. · 327 · [434] Zenor P L. Countable paracompactness of Fσ -sets. Proc Amer Math Soc, 1976, 55: 201–202. [435] . ortho- . (), 1983, (1): 60–66. [436] Zhong N (). Generalized metric spaces and products. Ph D thesis, Univ of Wisconsin, Madison, 1990. [437] Zhong N. Products with an M3 -factor. Topology Appl, 1992, 45: 131–144. [438] . Arhangel’skiı̌ . , 1982, 25: 129–135. [439] Zhou Haoxuan (). On the small diagonals. Topology Appl, 1982, 13: 283–293. [440] . ortho- . (A ), 1987, 8: 632–634. [441] Zhou Jingyuan (). Normal spaces whose Stone-Čech remainders have countable tightness. Proc Amer Math Soc, 1993, 117: 1193–1194. [442] . θ- . , 1983, 3: 27–30. [443] Zhu Jianping (). The generalizations of first countable spaces. Tsukuba J Math, 1991, 15: 167–173. [444] Zhu Jianping. On indecomposable subcontinua of β[0, ∞) − [0, ∞). Topology Appl, 1992, 45: 261–274. [445] . M1 - [446] . . , 1984, 4(1): 9–13. [447] . Y. Yajima [448] Zhu Jun ( . (), 1983, (1): 67–70. . (A ), 1988, 9: 160–164. ). On collectionwise subnormal spaces. Chin Ann Math Ser B, 1988, 9: 216–220. [449] . . , 1991, 34: 309–315. [450] . . , 1996, 25: 299–304. () ℵ1 85 α 156 B(x, ε) 256 βX 72 C[a, b] 124 β F2 45 βN F3 44 F4 42 c 4 Fσ ∩ 9 Fσ 246 73 54 1 χ(X) 37 Fσ 139 χ(x, X) Gδ 200 ∪ Gδ Gδ 200 266 1 δθ γ 9 37 267 G∗δ 218 G∗δ 218 ∈ 1 I 15 L2 [a, b] 124 Q 15 N (A) 79 R+ 11 Sω 1 293 P 240 Sω 89 µ 246 Sε (x) 8, 79 ∈ / 1 X/A 28 ω 5 X/R 28 ω ⇔ 1 ω1 5 ⇒ 1 ∂ 16 Σ Σ 220, 265 Σ # Σ ℵ ℵ0 ℵ1 5 σ σ 224 σ 268 σ 141 99 213 σ 268 130 131 224 5 ℵ0 63 σ 265 ∗ 165 99 σ 167 σ 167 · 329 · σ ∗ < 112 ⊂ 1 θL θ 188 139 (FB1)∼(FB2) (Fl1)∼(Fl3) 17 (G1)∼(G3) 113 (I1)∼(I4) 201 18 14 (M1)∼(M3) 76 θ 159 (N1)∼(N5) 8 θ 159 (NB1)∼(NB4) 10 ε 89 (O1)∼(O3) ε 79 (TG1)∼(TG2) 7 113 ∅ 1 (U1)∼(U4) 1 ∗ Lindelöf 197 ∧ 112 Čech 207 cs 112 280 cs-σ () 281 cs∗ 293 g 229 A Alexandroff 69 k 252 Alexandroff k 252 Alexandroff-Urysohn k k k 61 268 k 268 k 148 l2 78 m n(X) 54 o(X) 5 p pγ 236 r 270 r 270 s 260 w(X) 36 Baire 96 Baire 96 104 Bing-Nagata-Smirnov 157 Birkhoff-Kakutani Burke 172 C Cantor 94 Cantor-Bernstein 2 305 120 B Bing 208 q 55 CCC CH 49 5 Chaber Cl 218 12, 27 cosmic 272 D (B1)∼(B2) 9 (C1)∼(C4) 12 de Morgan (D1)∼(D4) 15 Dowker 154 (F1)∼(F3) 9 Dowker 155 1 4 126 104 · 330 · F Filippov Fr 262 16 Mi 228 meso 159 meta 159 Fréchet 37 meta-Lindelöf Frink 203 Miščenko G Gruenhage-Junnila Guthrie 232 286 H Hanai-Ponomarev Hausdorff Hausdorff 111 33 33 Heath-Hodel Hilbert 249 30 165 Miščenko 258 Michael 136 Michael 227 Michael 142 MOBI 196 MOBI1 263 Moore Moore 125 199 Morita-Hanai-Stone 14, 182 iso Nagata 187 neat 188 Niemytzki 173 Junnila-Yun 11 294 Niemytzki K O Kuratowski Kuratowski 242 Nagata-Smirnov J Junnila 12 58 ord(x, U ) ortho 224 Lašnev 245 Lindelöf 37 Lindelöf 138 164 P pressing down lemma pure 188 246 Siwiec-Nagata 40 203 Sorgenfrey 39 M0 246 st(A, U ) 101 M1 227 st(x, U ) 101 202 M M1 228 214 Smirnov Sorgenfrey M 178 S M M 11 158 L Lašnev 110 N I Int 260 Stone 11 99 M2 227 Stone-Čech 72 M3 227 Stone-Čech 72 103 · 331 · () T T0 T0 32 32 T1 T3 33 T5 34 35 35 142 Tietze 43, 65 totally 125 Tukey Tychonoff Tychonoff 43 Tychonoff 30 68 46 Tychonoff 35 U Urysohn 97 W 202 219 w∆ 202 Weil 126 Worrell 172 Z Zermelo 6 Zermelo 6 ZFC 201 Zorn 6 229 256 256 40 39 3 107 96 96 78 12 56 Tychonoff w∆ 38 Tychonoff w∆ 229 6, 56 Tychonoff 34 Tamano 31 33 T5 273 B 33 T4 T4 33 T3 31 263 32 T2 T2 32 T1 T1 A 130, 239 145 9 34 4 4 213 138 22 27 k 268 16 16 110 1 1 5 192 191 · 332 · 1 37 37 82 258 C 228 228 µ 246 1 17 6 47 197 158 9 159 69 19 2 254 254 134 86 76 19 19 76 79 256 2 11 11 118 14 76 2 131 135 131 D 74, 106 7 256 256 117 124 2 49, 117 86 k 276 4 226 F 15 15 35 66 37 Lindelöf 37 196 131, 227 101 ortho 9 159 164 15 305 146 146 19 15 15 2 28 165 · 333 · 32 1 37, 51 14 1 5 127 82 71 133 G 35 35 19, 20 14 79 199 156 246 T2 66 222 Arens 41 5 45 4 273 51 110 46 22 7 60 4 30 207 17 59 107 48 265 144 30 131 176 4 1 159 46 148 68 9 12 48 J 212 5 45 1 H 110 66 203 Fσ 2 246 2 145 1 5 47 134 66, 239 19 146 3 ortho 196 · 334 · 14, 18, 19 meso 170 76 meta 170 76 117 76 107 K 1 9 7 180 217 217 42 8 L 79 124 4 4 49 8 8 138 22 77 27 ortho 126 126 91 46 47 124 256 97, 119 3 97 135 256 6 37 35 155 49 8 147 150 41 10 21 3 170 239 17 18 4 M 63 49 2 130 170 N 306 14 14 196 136 5 θ 170 135 167 226 · 335 · 113 R 125 201 75, 136 159 306 306 201 k 189 [ω1 , ∞)r 58 δθ 165 δθ 165 2 2 θ̄ O 162 θ̄ 162 77 θ 159 7, 76 θ 159 79 S P 149 3 3 293 28 28 28 8 80 Q 5 32 3 3 4 5 18 46 41 46 166 17, 18 19 15 220 1 Σ 224 # 224 Σ ∗ Σ 246 136 T Fréchet 305 71 37 71 76 4 7, 8 3 22 135 3 2 89 7 188 126 64 22 22 · 336 · 54 3 7 11 113 11 36 22 5 30 48 22 W 27 2 101 83 166 58 166 83 47 B 198 b1 198 92 126 35 43 19 3 12 19 281 89 306 54, 224 54 76 268 37 12 5 64 6 Y 76 p 76 15 5 X 78 7 145 2 30 167 3 3 3 211 126 112, 123 112, 123 112, 123 119 62 42 208 p 136 64 5 76 300 121, 123 122 146 · 337 · 36 36 2 139 197, 207 57 57 38 38 105 17 246 5 1 3 65 2 136 1 121 34 Moore 5 265 33 85 2 1 19, 281 18 37 1 27 28 18 1 3 4 5 192 4 5 201 28 107 Z 146, 265 6 3 2